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Grothendieck ZIHFDFRFHRE & BT e DB R

Bl EHE (FERE)H
B &Z (RREHRE)
BRI REE (MR

Grothendieck ZIH:01%, Schur ZIHA D K #ERk & LT Lascoux—Schiitzenberger [4]
WA D EFREI N, Schur ZIHAUINT 2 Weyl DEHERX O (L2 Tkeda Naruse [3] 12
EDREINTED, RFEHEHTIXZN% Grothendieck ZIHADER L 35, Fwsl [1] 10
D&, ZORMEY Gauss B X U Holman OFBERMEKE L OERERNT 5.

FEEBEI N = (M, A,..0\) ZIFAERKBOTE T 5. @ [3]1T&D,
Grothendieck ZTH G\ (2 | B) ERDETR%ZE HD:

2 (1 4 Bay)i !

Gre 10 =y 1)

1<i<j<n
CIT, ZHrcCnBIURNTIX—XBecCtTsb. ERTBVWTB=0TF3L,
Grothendieck ZIHFUZ Schur ZIHAIC—HF 2. BB, Gy(x]0) =s)(z) TH 5.

X (1) iITHBWT, Schur ZHKD 7 v 7 RAKE XU Lenart [5] 1T & % Grothendieck
ZIHR D Schur ZIHAANDOERZHWS &, X EoN5.
Proposition 1 ([1]). 2% X = (k,0,...,0) BXTF X = (1%,0,...,0) (k € Z<o) TR L
T, ZRERRAMD 110

k— k, 1—
(1) Gy, 1,...,1| ) = (“k, 1)2F1( L ”;-5).

k, k—

X (1) &N, BBOERIKE (21,...,2,) = (L,¢,¢% ..., ¢"") (¢ €C gl < 1) 21T
W, fTHIROIFRR D 5 XG50 5.
Theorem 2 ([1]). FEEDOTEI N ITH LT, KD LD,

0 1 n—1
(L g | B) = kz DS <£)<k1)(nk—1)ﬁk++k

1=0 k2=0 kn,=0

Ni+n—j+k; _ Ai+n—itk;
q 7 —q
< e )

1<i<j<n

*LT657-8501 ST XA 1-1 M RFR AR ER SR
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*2 T516-8555 —EILPHHFHAGAN 1704  REEEREHE
e-mail: t-nobukawa@kogakkan-u.ac.jp

*3 T 657-8501 SLHULAF XA 1-1 M RFEREBEARF TR
e-mail: tfujii@Gmath.kobe-u.ac.jp
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B SVT(\, n)| OBFRARSE SN 2.
Corollary 3 ([1 ]) EE'O)/\%U AMTH LT, R ALD.

e -5 3 () I S

— 1
k1=0 ko=0 1<i<g<n j

fihsz, X (2) 1IZLL R D Holman OEEMEE F) v Xidh 3 ZEH @R [2) 2 H
WTRT N TES:
F(n)((Aij)(n—l)x(n—l)|(aij)nm|(bij)nxv‘(zﬂ)nxl)

o0 AZ + ]{/‘ n v n 1 n ‘
5 (e i)
E1,...,kn=0\1<i<j<n j=1i=1 j=11i=1 \"W/F) \ j=1

::*,?ﬂ(wﬂiynlﬁﬂ@ hTH5.

Aqg O
A A

(Aij))m-Dxm-ny = | *° 7% '
Aln A2n e An—l n

Holman O@EMMEHIZ, 2=X VA U(n+ 1) OXRBERICEN S Z e THIHATWS
Theorem 4 ([1]). FEEDZEI AN IR LT, FEHEROMEL [SST(A\,n)| ZHWZ &, X
DS D LD,

GA(1,1,...,1|p)
Ao 0 1 5
Aln A2n e An—l,n —n + 1 1 —ﬁ
SIT, A=A N+t T A

BE
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Virasoro Action on Schur Q-Functions and Pfaffian
Identities

Kazuya Aokage (Ariake College)*!
Eriko Shinkawa (Tohoku University)*?
HiroFumi Yamada (Rikkyo University)*

1 Schur Q-Functions and Their Definitions

Schur Q-functions were originally introduced by Schur in the context of projective
representations of symmetric groups. We begin by reviewing their definitions and
fundamental properties.

Let a partition be a finite sequence of integers A = (A1, Ag,..., \s) such that \; >
Ay >--- >\ > 0. The size of A is |A\| = 32¢_, A;, and its length is denoted by £()). A
partition with distinct parts is called a strict partition, and we write SP(n) for the set
of strict partitions of n. Let V = CJ[t; : 7 > 1, odd] be the polynomial ring graded by
degt; = j, and write V = @~ ,V(n), where V(n) denotes the space of homogeneous

polynomials of degree n. Define an inner product on V' by (F,G) = F(20) G(t)|
where 25: (281, %83, %(95, .o ) with 8j = %
Put §(t,u) = >, gty and define g,(t) € V(n) by

t=0 "’

eStu) an(t)u".
n=0

For integers a, b with a > b > 0, define

b

Qu(t) = (D) (t) + 2D (1) quri()gp—i(t),  Qralt) = —Qup(t).

=1

Given a strict partition A = (A1, Ag, ..., Aoy, the associated Schur Q-function is defined
by the Pfaffian

Qx(t) == Pf (Q)‘i)‘j(t>)1§i,j§2m :

The Schur Q-function Q,(t) is homogeneous of degree |A|, and the collection {Q\(¢) |
|A| = n}, indexed by strict partitions, forms an orthogonal basis for V(n) with respect
to the above inner product.

2 Quadratic Relations for Schur Q-Functions

For A = (A\,...,\on) € SP, Schur Q-functions satisfy the following quadratic
relations:

*1 Department of Mathematics, National Institute of Technology, Ariake College, Fukuoka 836-8585
e-mail: aokage@ariake-nct.ac.jp

*2 Mathematical Science Center for Co-creative Society, Tohoku University, Sendai 980-8577
e-mail: eriko.shinkawa.e8@tohoku.ac. jp

*3 Department of Mathematics, Faculty of Science, Rikkyo University, Tokyo 171-8501
e-mail: hfyamada@rikkyo.ac.jp

This work was supported by KAKENHI (Grant No. 17K05180, 24K06859).
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Theorem 1. ([1])
For \ = ()\1, ceey )\2m)7

2m

Z(_1)ialQ)\1,)\ialQ)\QW,’X“”’)\Qm =0,
=2

2m

S (2200 05Qs, 5 s + BN, 5 s, ) =0

=2

When m = 2, the first identity in Theorem 1 coincides with the classical Pliicker
relation that characterizes the Grassmannian as a projective variety. This observa-
tion suggests the possibility of a geometric interpretation underlying the formulas in
Theorem 1.

3 Virasoro Operators and Main Results

For a positive odd integer j, put a; = \/§8j and a_; = \}—5@ so that they satisfy the
Heisenberg relation as operators on V' :

[aj, ai] = jdjyi0-
For an integer k, put

1 1
Lk = § Z A A5 40k - +§5k‘,07

J€Zodd

{ajai lfj < ’i,
Q0 =

where

a;a; lfj > 1
is the normal ordering.

Theorem 2. ([1])
Let A = (A1, Mg, ..., Aay) be a strict partition. Then for any k£ > 1

2m

Li@Qx =Y (N — k) Qx2ke,,

=1
where A\ — 2]€El = ()\1,. . .,)\i — Qk, . .,)\Qm).

Theorem 3. ([2])
Let a = (aq, ag, ..., ap) be a positive integer sequence. Then

14

k-1
1 ) _
L_1Qq = Z (a; + k) Qatore, + 2 ;(-DZUC —0)Qa2k—iis k>1.

=1
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4 RTEt Wess-Zumino-Witten BB DY U N V& & HIB

Shangshuai Li*, JEH Ei& T(&H3%) and Shan-Chi Huang', Da-Jun Zhang* ()

4 X0 Wess-Zumino-Witten(4dWZ W) )
- v — " RN 6-dim Chern-
BRI 2 X0 WZW B D & R thi ¢ & Simons (CS) action|
h, L E L <ol %z & [13,

reduction reduction
9, 15]. —J7, 4XI6WZW B0 E ) /5 ) )
4-dim CS 4-dim WZW
Bz v o AER (K E S > - 2 1 |
N duality?
LR (=ASDYM) R & %4li) TH b, catiots o various
WA RY—HEE L COHImEZE-> [14]. solvable models integrable systems

R split 3l & (++ ——) DB 2 DR
AE N=2 RO EOLO MR Z Gl U [17), R0 6 S £ X E LS
BAZ52 5 2 LS IT 5 (Ward F48)[18]. —77, 2017 48 Costello i & Witten
K &IIEHEA K, FIERD AR b L7 A=Y DfRZ R EEED 25 2 LT, 4100
F Y — v A ' AHEH (4dCS) NI EFIF AR (A VY RPAA FNEML L) %2
AR THEETHS 2 LR A L7 (3, 2. & 5122020 4EEHIC Costello DR % Z
I C Bittleston X & Skinner K236 XIuF ¥ — v ¥ A € ¥ A#E (6dCS) 2> 5 4dCS &
4AWZW B2 NZIGE) HAAD) ¥ 7> a Vil elon s T EZAHL (1] 2D
(6dCS = 4dCS/4dWZW) DA Z Z D3[R R DR —BEw TR A A ) e % D
WFEE D% 2 TE ) MAICTER AR R IN TS, £TDLIBY TV -7 7
47V = aryORPUSE W T 4dCS & 4dWZW O [ BB O RHIGEI (R 23K D 57
DI ERTFRINSG [7]. T BBDIRFIPHIC 72 2 AR & AR R DRI OARK D
HIGERE FE L TE D RZEEE .
YroARA(KACKNY Y - SVAARR) oV Y PRI nEF TR oD
BIDSHI S AT 7B, L 7 =281 X D KK S 172 Wronskian fi# [16] 2> 513 5415
U VIR [4] IREEEEOEE 2R, 2Ty - SV ABEROPHA T, 7 — PR
DT v D2 DEE, (EHEEDFEME TH D 3 Kookl LICRET 2 (KXt 1
D)1V P vyBEHIN[5]. ReTn VYt VBEOWGERIR 2 B OKP Y Y kv
EFRILZ Tnfilo 1 V) FrodifitEGbye) TH2 I LRI N, fiHDT
1L (phase-shift) bt I 7 [6]. T 9 L THEEEMER & OERMED L ~)LTHIO TH
ST 5703, I HIZA4AWZW BRI DO EHEEIC D WTH 26 DFOIR 2 5\ 038
SHICEN, RIEDKP Y Y by EHRILAESDTH S T EAh o7 (8], EHAEKP
VU v OaBIZRERAK T B IZ & 5 T positive Grassmannian D F 3 THFFICEH 2
S5NTED [11], ASDYM VY k¥ DOFHADEHIOGHDZEL T b. KP VY v
DYV 777 DHEALRIT TYFR, VY FrThHY, HUIIHD TR KD
MR TH 2 5 N HIBIRETH % L IFINTE %

C DWFFEIE R, Pr ek, W E SR M o B2 Z T TnE L7,
* bR B
TR RAABE S Tu R AT R
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Z DFHETIX, A RTCWIZIWEERID Y ) b U fiEZfEA L, 2V V) b VfED Large phase-
shift fifR (HLIGHGIR) 2 56w 9 % [10]. ZDFEHR, KPY U b v EE>T, 2200 Y FHY
) by DB S L IIEIREETIZ R, 20D VFREIY Y v OB - 7 LIRIRAE L 72 2
ZEWTHol (TH). 72 2L RWRF 5 D554 @ Large phase-shift iR Z2H( 5 &,
mKdV HRE7Z £ TR 6 41 % Double Pole FHIEIREEDSTH NS Z L3007z, T H
DIIGHRIIKP vV VU b v &8 ) REBIRZEG DS, ASDYM HfEA) & KuEIL TR
LN A TRATHRS N EIBHREFPTHZ. LB [10] TEwmI N5V Y b Ui
binary Darboux A CTHEEK X 4172 Grammian FIDETH 5. a—> —F¥Ic Xk 27 7
00— [12] L DBROBHS I I N T 3 [10]. RUHNUL, T 6 DBIRD N=25%
M I BT 2 RS E DOWIETT IR (4 XIG Chern-Simons B & 0 B 5# 52 ) 22 i
DY E) 12O T HEEHR L 72\ [7).

e .‘-ti
e
ﬁﬁ-ﬁ-ﬁ.ﬂi‘t‘ﬁ o
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Large BKP vs. B-Toda in Lax-Sato form
= K S ON TEUNYINE S S E 2T el

s MR, t = (t1,ta,---) A KO L T%,. KBKP (large BKP) /&% Jimbo-
Miwa[l], Kac-van de Leur[2] IC &k > THEAZI L, 7HE (s, t) ICXT 2 BERE R

j{zs_s/eg(t_t/’z)T(s —Lt— [z + 1, + [z_l])d—z,
2miz (%)
’ ’ dz 1 /
s'—s E(t'—t,z2) -1 o U DU & A ([ 1\5+s
+7§z e r(s+ Lt + (s — L8 - )5 — = (1 (—1) )

T\%%én%' - :VG‘[Z] = (2722/27"' 7Zk/k7"')7 f(t,Z) = t12+t222 + - kb)“))‘lgiﬁﬁ@ﬁﬂ
ExEHWTWA, Guan 5 [4] (XIETEEL

(s =1t =" L ewn g (5.4,2) = TEFLE ) PR
7(s,t) oYY 7(s,t)

REAL, BENIMAESL =af +af A +afA 2+ (A=e%) %

U,y (s, t,z)=

U,y (s,t,2) = S+zse§(t’z), U_(s,t,2) = Sz leE(t2)

KD LDO K I ITED T, (%) %2 ST 2R

SN () 15, (1) SEAIAS (@) = 0 3 (- ()N (@)

n=—oo

ICHZE L2, 22T I3ESEHROEANERZR T, 728 21 (a(s)A")* = A" a(s) =
a(s—n)A " £ D, Th 6 Sy ITRT B REIFERE O R (e TR ’@7 AMEIFE

Ly=5.AS., L_=S8"A"15"

W27y 7 2BARME NS (Wb BENAIEIEE ) .

Guan 513 2D 7 v 7 A% T Zabrodin 5 ® BBFHPEE (B-Toda hierarchy)
[5, 6] £ DAIGEIR b AL 7. B R HBERE 1 2 Koo H E@Qoow v 7 AMEMFE L =
wpA+up +ugA™ - L =GgA T F g agA - (FNEFNLL LSHIRTS) IR T

L'(A—AYH=(A-ANL

EVWIHI RS EBT I L IckoTROND, ZO0MiEE LTL, L OFEERBUIINT VY RE
Brug = uo 27y, 518, ZORMEMEZROTDIC, 2 RTTH HPEE D 2 25 DIRFHZ
Bt = (t1,ta,-), t = (f1, 2, ) DAL +t =00 LICHIRI N 5, IR I N7 IR [HEIZEL
t1,to,--- WICBAT 2 9 v 7 2R & AR

OL oL
A — = [A,, L
9t = [Ag, L], e [Ag, L],
oW OW - -
—— = AW —WAF, ——— = AW+ WATF
oty Ak T Oty Gl

FEATME B SIS (C)No. 24K06724
' Kac-van de Leur[2] 13 Z11%2 7 TILS A VI BKP B&8 L 'FA 7. KBKPRJE L) ARz Z g THIS T
W7- BKP Bid (WNBKP BB & IX5ld %7212 Orlov-Shiota-Takasaki[3] 12 & > THA I N7z,
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EWIHIBICR L, T2 TAL IR
Af(A—AH = —(A-A"NH4,

&0 R THEREESERE (kEAEXBR»0EE2) THE, WIWIEW =
wo + WA+ weA T2 4 W o= g + WA + WA - LI TBOESEHET, BT
BIRL = WAW L, L =WA WL 3R D 7o,

Z o BRIFHEEEOERE Guan 5 D ABKP BE Dl & Rt iu, LTz &23b
5, 132200 X[4, 5] 6atAHis, 23 BAFHHDO FHILTH 5.

1. WW ik Sy &
Sy =W@A—-AH2 5§ =(1-A2) 2>

L) BIfRTRiIZT» T
W*A-AHW =A - A~

LS A AT 2 DR L LTINS Y R wo(s)Bo(s — 1) = 1 25K D 32,
25 LRI 51T bk BKP B & BRI BRI S L T\ 2,

2. U =W W3y it

oU
—— = AFU + UA*
ot +

& AREIBEFR A
Us(A— A1) = (A— A HU (@)

ZWirc T, RISt =018 2UHIE Uy = U(0) 12 Z OREMBIRA 22 L, Uk

U= exp (Z tkAk> Ug exp (Z tkAk> (<>)
k=1

k=1
LY,

3002, Uf(A— A1) = (A— AV 27 THESEAZUICHLTUZ (O)Ick>T
EFONL, Ul (Q)%2il%T. 20U %

U=w"'w

V) XY)ICHF TS (F =B W - gW, W — gW ZFHL T, NI 2
2T T X)W, W 2BRERS), W, W IRz L, L=WAW ™,
L=WA "W aBRFHEEOMRE 5.2 5.

S5
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KP Solitons and the Schottky Uniformization
Yuji Kodama (Ohio State University)*

Abstract

Real and regular soliton solutions of the KP hierarchy have been
classified in terms of the totally nonnegative (TNN) Grassmannians.
These solitons are referred to as KP solitons, and they are expressed
as singular (tropical) limits of shifted Riemann theta functions. In
this talk, for each element of the TNN Grassmannian, we construct
a Schottky group, which uniformizes the Riemann surface associated
with a real finite-gap solution. Then we show that the KP solitons
are obtained by degenerating these finite-gap solutions.

The talk is based on a collaborative work with Takashi Ichikawa
(Saga University) [11].

1. Introduction

It is known that solutions of the KP equation can be constructed from any al-
gebraic curves (Riemann surfaces) [19]. A solution from a smooth curve is a
quasi-pertodic solution, and some soliton solutions can be constructed by rational
(tropical) limits of the curve with only ordinary double points, i.e. a singular Rie-
mann surface with nodal singularities (see e.g. [21, 26, 2]). In particular, the cases
corresponding to the KdV and nonlinear Schodinger equations are well-studied, in
which the algebraic curves are given by the hyperelliptic curves (see e.g. [2, 21]).
Recently, there are several papers dealing with some non-hyperelliptic cases, e.g.
so-called (n, s)-curves, where the authors construct the Klein o-functions over
these curves (see e.g. [3, 18, 20, 22]). It seems, however, that almost no result
has been reported for the cases with more general algebraic curves. Because of the
difficulty in finding a canonical homological basis for the general algebraic curves,
it may be quite complicated to compute explicitly a rational limit of these curves
and the corresponding Riemann theta functions (see [22]). On the other hand, a
large number of real and regular soliton solutions of the KP hierarchy, referred
to as KP solitons, has been classified in terms of totally nonnegative (TNN)
Grassmannian Gr(N, M) (see e.g. [16, 15, 13]). We also mention that recently,
there are some progress on the study concerned with the connections between the
algebraic-geometric solutions and these soliton solutions [1, 23, 24, 17].

In this talk, we first give a brief review of the KP solitons with combinatorial
aspects of the TNN Grassmannians. In particular, we describe some details of the
so-called I-diagram, introduced by Postnikov [25], which provides a parametriza-
tion of the KP solitons. In [14], we identify singular Riemann surfaces for the KP
solitons, and introduce the M-theta function defined on the singular Riemann
surface. The M-theta function is obtained by singular (rational) limit of the
Riemann theta function, and it gives the 7-function of the KP soliton.

2010 Mathematics Subject Classification: 05A05, 30F10, 14H42, 35Q51.
Keywords: .
*e-mail: kodama@math.ohio-state.edu
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Then using the Schottky uniformization theory [9], we construct real smooth
Riemann surfaces associated with finite gap solutions of the KP equation. In
particular, we show that the I-diagram in the TNN Grassmanian theory is quite
useful for the construction. More precisely, the J-diagram can provide the infor-
mation about a canonical homological basis for the smooth Riemann surface.

2. The compact Riemann surface and the theta function
Let R, be a smooth compact Riemann surface of genus g. Let H,(Ry,Z) be the
homology group of R,, and a set {a1,...,a,,b1,...,b,} be a canonical basis in
H,(R,,7Z), that is, we have the intersection products,

ajoar =0, bjob, =0, ajoby=70;y.

It is well-known that any compact Riemann surface of genus ¢ is homeomorphic
to a sphere with g handles (see e.g. [5]). The left panel of the figure below shows a
Riemann surface of genus 2. Cutting the Riemann surface along the a-cycles, we

obtain the manifold CP' with 2¢ holes, as shown in the right panel of the figure.
This implies that the Riemann surface can be obtained by identifying each pair
of a- and a'-cycles. The identification can be expressed by a Schottky group [6]
as shown in Section 6, which is the main theme in the present note.

Given a set of canonical basis of Hy(Rg,Z), we have the holomorphic differ-
entials {w; : j = 1,..., ¢} normalized by the conditions,

a;

The integrals over the b-cycles given by

Q) = ]{ Wk, (1<j<k<yg) (2.1)
b

J

define the g x g period matrix 2 = (£2;), which is symmetric and Im(€2) > 0.
Then the Riemann theta function associated with R, is defined by

for z € C9, and m7” is the transpose of the column vector m € Z9.
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2.1. The Riemann theta function on a singular curve

In [21] (Chapter 5, p.3.243), Mumford considered the theta function on singular
curve. Let 759 be a singular Riemann surface of (arithmetic) genus g correspond-
ing to the curve C, and let S be the set of singular points, S = {p1,...,ps} C ﬁg.
Assume that the singularities of ﬁg are only ordinary double points pi,...,p,
and that ﬁg has normalization

7:CP' — 7%9 with 7 (ps) = {ou, Bi} (2.3)

That is, ﬁg is just CP! with g pairs of points {«;, 5;} identified. Figure below
shows the case with ¢ = 2. The singular Riemann surface R, is obtained by

b1 b2

pinching all a-cycles as shown in the figure.
By pinching a-cycles, the holomorphic differentials {wy : & = 1,..., g} take
the limits [12, 10] (see also Section 6.1),

o — wkzﬁ( ! ! ) (2.4)

274 z—ak_z—ﬁk

Then the period matrix in (2.1) becomes

~ a 1
Qj,k — Qj,k = / W = —— In Cj,k mod(Z), (25)
5 271

where C}, is given by the cross-ratio [a;, 8;; a, Bk,

(o — ) (By — B)
(o — Br)(B; — ow)

Note in particular that the diagonal parts of the period matrix €2 has the limits

Cin = |y, Bj; o, Be] := (2.6)

ImQ;;, — oo for 1<i<y, (2.7)
Then the limit of the J-function (2.2) is just 1, which corresponds to the choice
m” = (0,...,0). To obtain a nontrivial example, we consider the shifts
1 .
Z; — zi—§Qi7,~, for i=1,...,9,
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which then gives the Riemann theta function with shifted variable z € CY,

VUy(z; Q) = Z exp 27i (% Zi;mi(mi - 1), + ZmiijiJ + zg;mizi> )

mez9 i<j i=
(2.8)

Then the limit €2, ; — +ioo for all j =1,..., g leads to

g
0,(2;Q) — 0y(2;Q) = Z exp 2mi (ijmkﬁj,k—kZmnzn) (2.9)

me{0,1}9 i<k n=1
g
=1+ Z 627Tizn + Z Cj7k€2m(zj+zk) 4.+ (H Cj,k’) 6271'1' >y zn’
n=1 j<k Jj<k

Note that the infinite sum of exponential terms in the ¥-function (2.8) becomes
a finite sum of 29 exponential terms with m; € {0, 1}, if all Cj;, # 0 for j < k.
The function ¥, is referred to as the M-theta function [14].

Remark 2.1. When all the pairs {oy, Br} are real and o < By w.l.o.g., one
should note that the cross ratio Cjj in (2.6) takes the signs depending on the
orders of the pairs, i.e.

(i) ifozj<ﬁj<ozk<5k OTOéj<Oék<6k;<ﬁj; then Oj,k>07
(ii) if aj < ap < Bj < B, then Cj;, <0, and
(111) ’Lf = ay, Or/and ﬁj = ﬂk; then Cj,k = 0.

The case (ii) will be important when we discuss the reqularity of the soliton so-
lutions (see also [8]). Also note that the case (iii) implies that the off-diagonal
element 2 i, takes +ioco, in addition to the diagonal elements in the singular limit

(2.7).
3. The KP equation

In this section, we give a brief summary of the KP solitons for the purpose of
the present paper (see e.g. [13] for the details). The KP equation is a nonlinear
partial differential equation in the form,

O (—40yu + 6udyu + O2u) + 302u = 0, (3.1)

where OF := g—; for z = x,y,t. The solution of the KP equation is given in the

following form,
u(z,y,t) =20 In7(x,y,t), (3.2)

where 7(z,y,t) is called the 7-function of the KP equation.
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3.1. Soliton solutions

The soliton solutions are constructed as follows: Let {fi(z,y,t) : 1 <i < N} be
a set of linearly independent functions f;(z,y,t) satisfying the following system
of linear equations,

The Wronskian Wr(fy, ..., fy) with respect to the z-variable gives a T-function,
that is, the function u(x,y,t) in (3.2) is a solution of the KP equation,

T(x,y,t) = Wr(fi, fo, ..., f). (3.4)

(See, e.g. [13] for the details.)
As a fundamental set of the solutions of (3.3), we take the exponential func-
tions F;(z,y,t) for j=1,...,M (M > N), ie.

Ei(z,y,t) = e @Y  with &i(x,y,t) =Ko+ m?y + K,?t. (3.5)

where k;’s are arbitrary real constants. In this paper, we consider the regular
soliton solutions, for which we assume the ordering

Rl < Kg < -+ < K. (3.6)
For the soliton solutions, we consider f;(x,y,t) as a linear combination of the

exponential solutions,

M

filz,y,t) = Z a;; E;(z,y,t) for i=1,...,N. (3.7)

j=1

where A := (a;;) is an N x M constant matrix of full rank, rank(A) = N. Then
the 7-function (3.4) is expressed by

7(2,y,t) = [AE(z,y,1)" |, (3.8)

where E(x,y,t)T is the transpose of the N x M matrix E(z,y,t) defined by

E, E, e Ey
Blogy— | M0 b (3.9)
/iiv_.lEl I{év_.lEQ . lié\\;_.lEM
Note here that the set of exponential functions {Ej,..., Ey} gives a basis of

M-dimensional space of the null space of the operator Hij\il(ﬁx — K;), and we call
it a basia of the KP soliton. Then the set of functions {fi,..., fy} represents
an N-dimensional subspace of M-dimensional space spanned by the exponential
functions. This leads naturally to the structure of a finite real Grassmannian
Gr(N, M), the set of N-dimensional subspaces in R¥. Then the N x M matrix
A of full rank can be identified as a point of Gr(N, M), and throughout the paper
we assume A to be in the reduced row echelon form (RREF).
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Definition 3.1. An N x M matriz A in RREF is irreducible, if

(a) in each row, there is at least one nonzero element besides the pivot, and

(b) there is no zero column.

This implies that the first pivot is located at (1,1) entry, and the last pivot should
be at (N,in) with N <iy < M.

The 7-function in (3.8) can be expressed as the following formula using the
Binet-Cauchy lemma (see e.g. [13]),

7(z,9,t) Z A(A)E;(z,y,t), (3.10)
1e(5h)

where I = {i; < iy < --- <iyn}is an N element subset in [M]:= {1,2,..., M},
Aj(A) is the N x N minor with the column vectors indexed by I = {iy,... iy},
and Er(z,y,t) is the N x N determinant of the same set of the columns in (3.9),
which is given by

Er= H(Hil - K’ik) Ei1 e EiN = H(’%il - ’%ik) eXp (511 +-ot SZN> : (311>
k<l k<l

The minor A7(A) is also called the Pliicker coordinate, and the 7-function repre-
sents a point of Gr(N, M) in the sense of the Pliicker embedding, Gr(N, M) —
P(ANCM) : A s {Af(A) : T € (WD)}, Tt is then obvious that if all the minors
of A are nonnegative, the 7-function (3.10) is sign-definite, i.e. the solution u in
(3.2) is regular. The Gr(M, N) consisting of these elements is called the totally
nonnegative (TNN) Grassmannian, denoted by Gr(NN, M)>o. Then the following
theorem for the necessary condition of the regularity was proven in [16].

Theorem 3.2. The soliton solution generated by the T-function (3.10) is reqular
if and only if the matriz A is in Gr(N,M)s,.

4. Combinatorics for the TNIN Grassmannians

We here provide a brief summary of combinatorial description of the TNN Grass-
mannian Gr(N, M) (see also [13] for the details). Each element A € Gr(N, M)
is expressed as an N x M matrix in the reduced row echelon form. Let {iy,... iy}
be the pivot set of the matrix A. Then the Young diagram corresponding to the
pivot set is obtained as follows: Consider a lattice path starting from the top
right corner and ending at the bottom left corner with the label {1,..., M}, so
that the pivot indices appear at the vertical paths as shown in the diagram below.

M—N i 1
M—N-+1 ‘ ‘Z& |
: S : i1+ 1
M —N +n ‘ ‘zn

: S : in+1
MM-1 - iy+1
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We recall that the partitions A are in bijection with N-element subset I C [M],
i.e. we have Ay > Ay > -+ > Ay with

)\k:M—N—<Zk—kZ) for k’:l,,N

The irreducible element A € Gr(N, M)sq defines the irreducible Young diagram,
which has \y = M — N and Ay > 1.

4.1. The Le-diagram

In [25], Postnikov introduced the J-diagram (called Le-diagram), which gives a
unique parametrization of the element A € Gr(N, M)so.

Definition 4.1. A I-diagram is a decorated Young diagram with O in some
bozes, which satisfies the property (called I-property): If there is O, then all the
bozes either to its left or above it are all O. That is, there is no such O, which
has an empty box to its left and an empty box above it. We also say that a J-
diagram is irreducible, if each column and row has at least one empty box (i.e no
zero column or/and no zero row). See the left diagram in Ezample 4.3 below.

Then Postnikov proved the following theorem.

Theorem 4.2. There is a bijection between the set of irreducible I-diagram and
the set of derangements of the symmetric group Syy.

Here the derangement associated to the JI-diagram can be found by construct-
ing a pipedream on the diagram as follows (see [13] for the details): Starting from
a J-diagram, we replace a blank box with a box containing elbow-pipes connected
by a bridge and replace a box with O by a box containing crossing pipes as shown
below. Then we label the southeast (input) boundary of the JI-diagram from 1 to

- o= Ol- b

M starting from the top corner to the bottom corner of the boundary. We place
a pipe with the index of the input edge from the southeast (output) boundary
to the northwest boundary, and then label each northwest edge according to the
index of the pipe. Then the derangement ¢ with a pair (i,j) in (i) = j can be
found on the opposite sides of the boundary.

Example 4.3. Below shows a I-diagram and its pipedream, The derangement

2 ) 4
O|O]1 87 Dt
O O > 6 — 2
O|O] |4° s PPN
O 65 7 C\ 65
7 9 7 \e\7

corresponding to the pipedream is (8,6,2,5,4,7,9,1,3) in one-line notation.
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One can also show the following proposition from the J-diagram.

Proposition 4.1. Given an irreducible 1-diagram, the zero entries of A € Gr(N, M )>q
can be determined as follows: Consider a box at (ig,7) with O whose south-east
conner is a point of the boundary of the diagram, and recall the I-property. We
have two cases as shown in the figure below.

(a) The k-th row, say Ay, of the matriz A has the structure,
Ape = (...,0,1,...,%,0,0,...,0),

that is, the pivot “1” is at (k,i;) and the nonzero element marked by “«”
is at (k,j —1). The entries Ay, for j <1< M are all zero.

(b) The j-th column, say As;, of the matriz A has the structure,
(A ;)T =(0,0,...,0,%,...),

that is, the entries A;j =0 for 1 <1 <k are all zero.

Proof. Using Theorem 5.6 in [16] about the vanishing minors, one can show
(a) the minor Ai1,~~7ik717j7ik+1 7777 in (A) = 0, and
(b) the minor A

CATRPRORY 7 I YOS RO T K TR PO 5.4 (A) =0,

which imply the equations in the proposition. Note that there is a case 7 > 1341
in (a). This can can be also proven in the same way. 0

Example 4.4. Consider the ezample 4.3. The middle diagram in the figure below
shows the nonzero entries other than pivots in the matriz A, e.g. Asg # 0 and
As 5 # 0. Each empty box gives zero entry of A, e.g. A5 = Aszg = 0.

_ NG \D C\ 1 * | % 1 112 1
4 - 2 * | * * |2 314 5 |2
DD’ *Ja? 6 J¢
P e® * | % [6° 718 [6°

i \%\7 * | %7 9 (1017
9 8 9 8 9 8

FEach star in the middle diagram implies that there is a path [i,j] through the
pipedream from the pivot index i at the east boundary to the non-pivot index j at
the south boundary of the I-diagram.
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For A € Gr(N, M)s¢, we define the matroid,
M
M(A) = {] € ([N]) :A[(A)}. (4.1)

Let Iy be the lexicographically minimum element of M(A). Then we have the
decomposition,

M(A) = [ M.(4), (4.2)
where
M, (A) ={Je M(A):|JN | =N —n}.
Note that My(A) = Iy. We also define P;(A) as the set of pairs [i, j],
Pi(A) == {[i,j] i€ I\ J,j € J\ I for J € M;(A)} (4.3)

This implies that P;(A) is identified as the set of nonzero entries in A besides the
pivots, that is, [ix, ji] € P1(A) represents

(a) ik € Ip \ J is the k-th pivot of A, i.e. Ay, =1,

(b) i € J\ Iy is the nonzero element A ; in the k-th row.

One can define the order in P;(A): Let ¢ be a bijection satisfying the following
order,

(1) 0(li, k) < €([3,1)), if k > 1,

(2) £([i,0]) < £([4,0]), if i < j.

Then the elements of Pj(A) can be uniquely numbered from 1 to |P;(A)], i.e.
1< Ui, j]) < g, for [i,j] € Pi(A), (4.4)

where g = |P;(A)|. Note that (4.4) gives the ordering of the singular points in
the nomalization (2.3),

™ '(p) = {ki,k;} for 1 =4L([i,j]), and 1 <1 <g. (4.5)

As will be shown in the next section, the number g gives the genus of the Riemann
surface associated with the KP soliton. We remark that the ordering in (4.5) can
be obtained from the JI-diagram as shown in the right diagram in Example 4.4,
and we call the diagram OJI-diagram.

From the OJ-diagram, we can also show the following proposition on the sign
of the coefficient C,, ,.

Proposition 4.2. In the Od-diagram, consider a rectangular section whose con-
ner boxes are marked a,b,c and d with a < b < ¢ < d as shown in the figure
below. We also assign a pair of parameters (kp, k,) to each box according to the
boundary indices of the I-diagram. Then we have that
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—l a = (H’UHZ)
2 b] 1 b= (ki, ki)
&‘ . c = (K, K1)
T ’ d = (kj, k)
L £ k

(l) Ca,b = Ca’c = Ceg = Cb,d = 0, and Ca,d > 0, Cb,c < 0,

(ii) if one of the conner boxes is empty (no numbered) or the box is outside
of the Od-diagram, then either Cyq4 > 0 or Cy. > 0.

Proof. Note that in the J-diagram, the indices {7, j} are pivots, and {k, [}
are non-pivots. Also we have k; < k; < K < K. Then the proof is just the
computation of the coefficients given by the cross ratio (2.6). For example, the
coefficient C, 4 is calculated as

(ki — k) (K1 — k)

CEDICE N

C’a,b -

It is also easy to show that for the case where is outside the diagram, we have
Ch > 0 (in this case note that k; < ky < k; < k). O

Example 4.5. Consider Example 4.4. The following six coefficients are only
negative

Caz, Cor, Cog, Cuz, Cug, Cgg < 0.
All other coefficients for 1 <p < q <10 are Cp,, > 0 .

5. The 7-function as the M-theta function

The 7-function (3.10) can be expressed as

T(z,y,t) Z Z AJ VE;(z,y,1) (5.1)

n=0 JeMu(

J(AFE
:AIO(A>E]0 s y,t 1+Z Z A E
n=1 JEMn(A 1o To

Since the solution is given by the second derivative of In7, one can take the
T-function in the following form,

T(z,y,t —1+Z Z AJ (a:ytt)) (5.2)

n=1 JeMu(

where we have taken Aj (A) =1 for the pivot set I.
Then the following theorem is proven in [14].
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Theorem 5.1. Given irreducible A € Gr(N,M)so, the T-function (5.2) is the
M -theta function (2.9), i.e.

g g
T(x,y,t) = Vy(2; Q) = Z exp 27mi (Z mm; Qi+ Z ijj>
1

me{0,1} 1<j Jj=
g o~ ~ ~ ~
Y O 3 et g (H c> Tt
p=1 p<q p<q

where g = |P1(A)| and 2miz, = ép(m, y,t) = ¢p(x, vy, t)+¢2, and forp = ﬁ(ﬁk,jl(k)])
with the ordering ¢ in Py(A),

Oy =00 — & = (K00 — Ky )T + (0 — /7 )y + (K0 — K5t
m m Jm Jm
o [Lii iy — 5 400)

=a, (x
B ] La (i, — Kay)

. (Ki, — ki) (k.00 — K.)
Cp,q = exp (27‘(@ Qp,q) — (/{Zk — K:Zl )(]m — ]n' )
i = #50) (0 = 1

Here ¢ = (([i;, 5]), and a, o is the entry in A corresponding to the element
ik, jin’] € Pi(A).

As shown in [8], the sign of a, e is determined by the positivity of e?», that
is, it is the sign of the product in the equation.

5.1. Example

Consider the Od-diagram % Z . This implies g = 4, and the number in each box

of the diagram is assigned by [ = ¢([i, j]) for [i,j] € Pi(A) with A € Gr(2,4)>0,
le.

1=/(([1,4]), 2=1¢(1,3]), 3=4£(2,4]), 4=10(23]). (5.3)
In terms of the normalization (2.3), this ordering means 7~ '(p;) = {ay, 5;} for
[l =1,...,4, eg., 7 p2) = {K1,k3} (see (4.5)). Then the coefficients C; in
(2.6) are calculated as C1 o = C13 = Cyq = C54 =0, and

(K1 — F3)(Ka — Ka2)

The matrix A € Gr(2,4)>( corresponding to the diagram is given by

10 a3 aig
A= ’ .
(0 1 a2 3 a274
The signs of the entries a; ; are determined by the positivity of exp ¢?, i.e.

ed)? Ko — KR4 Ko — K3

(0]
= a4 > O, €¢2 = a3 > 0,
Ro — K1 Ro — K1
0 R1 — KR4 0 K1 — K3
e = agy 0, e’ = ag3 > 0,
R1 — R R1 — R2
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that is, using K1 < Ky < K3 < K4, we have a;4 < 0,a13 < 0,a24 > 0 and
a3 > 0. Notice here that these signs are not enough for the total nonnegativity
of A (the additional condition is determined by the regularity of the solution [16],
see below).

Then the M-theta function (i.e. the 7-function) in Theorem 5.1 is given by

=1+ 651 + €<Z~52 + 6(53 + 654 + 01,46514_54 + 02,3652—&-537 (5'4)

where the exponents are given by (E; = ¢y + ¢ with ¢ = &(x,y,t) — &(x,y, ) in
(3.5) for I = £([i,j]) = 1,...,4,

Pr=8—8, ¢2=8& =&, OP3=8 —&, G1=E&— &,

One should note here that we have a linear relation among the phase functions
¢Z‘7S, i.e.

D1+ s = o+ 03 = (§3+ &) — (&1 + &2).

Then the last two terms in the 7-function (5.4) becomes

0.1 40 01 40 K3 — K4
(Cl,4e¢’1+¢4 4 02736¢2+¢3> 919 = (a1 3004 — a1.4025) b1
1 — h2

This implies that for the regular soliton solution, we need to choose appropriate
constants ¢Y, ..., ¢ so that a; 3as4 — ajgasz > 0, i.e. A € Gr(2,4)s.

6. The Schottky uniformization

The main question in the present paper is to construct a smooth compact Rie-
mann surface R, associated with the KP soliton whose M-theta function 9, is
obtained by taking a tropical (singular) limit of R,. We answer to this question
using the Schottky uniformization theorem [6, 2]. A Schottky group is defined as
a finitely generated, discontinuous subgroup of SL,(C) which are free and purely
loxodromic [2]. In this paper, we consider a special case of the Schottky group,
which is generated by purely hyperbolic Mébius transformations in SLo(R). It
was shown in [6] that any compact Riemann surface R can be uniformized by the
Schottky group I', which can be represented as

R = QO)/T,

where Q(I") is the set of discontinuity of I' (see also [2]).
In order to define our Schottky group I'y for A € Gr(N, M)>, we start with
the following definition.

Definition 6.1. For each element i, j| € Pi(A), we define a pair of real numbers
{Kij, kji} with the order,

(a) Kk < Ko < K < Ko for all k <1 € [M], and

(b) Kkp < Kiq, when p > q and for k € [M].
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Let 7;,; be the hyperbolic Mébius transform on CP' having two fixed points
{Ki;, Kji}, which is defined by

"}/[i’ﬂ<2) — lii’j A AZ — /ﬁ)@j

Vid)(2) = kii T2 — Ry

(6.1)

where f; ; is the multiplier which is symmetric real constant with 0 < p; 5 < 1.
Then the fixed points &; ; and &;; are attractive and repulsive, respectively. Then
we define the Schottky group I'4 associated with A € Gr(N, M)s( as a Fuchsian
group given by

La = (g € PSLa(R) : [i, j] € Pi(A) ). (6.2)
where 75 in (6.1) is expressed as
1 Rij — MigRii  —HRijkji(1 — i
Vi) = ( i ~ M —(n, .j’_( | .M.’.J))> . (63)
(Kij = Kji)y/Paj Hij Rji = Hijhi,;

In Section 6.1 below, we directly construct vj; ;) as a deformation of the singular
curve (Riemann surface) associated with each element A € Gr(N, M)>o.
The isometric circle I(vj; ;1) of yp;,;) in (6.3) is then given by

(1= i)z — (Kij — pigrga)l = (Kji — Kig)y/Higs
whose center and radius are
I{‘._ .‘H.. . /{,‘_K‘.
Center = "3 — Hiilii, Radius = 2-—*4
L= pig L= pi

Vi (6.4)

Taking j1; ; small enough, one can assume that all the isometric circles are disjoint.
Note that 7;;) maps outside of the isometric circle (v, ;]) into the interior of
I(75,5)s see the figure below.

5 \g_J
o\

The (isometric) fundamental region, denoted by F(T'4), of I'4 is given by CP!
with 2¢g holes of isometric circles, i.e.

FCa)=Ext | |J Tnt (I(3y)) Ulnt (1@@9) , (6.5)
[i,5]€P1(A)

where Ext(D) means the set of exterior points of the set D, and Int(I(y)) repre-
sents the interior points of the isometric circle 1(7).

For each [i,j] € Pi(A), let wy ;) be the differentials on Q(I'4), the set of
discontinuity of I"4, defined by

dz 1 1
Wil = 5 Z ( - ) , (6.6)

verafte N7 1) 2T (Rs)
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where v runs through all representatives of the right coset classes of 'y by
its cyclic subgroup () generated by ;. Here Q(I'4) can be expressed as
QT4) = Uyer,v(F(Ly)). It is also known [6, 2] that the infinite sum in (6.6)
converges absolutely for sufficiently small y; ;. Then we have the lemma.

Lemma 6.1. The differentials wy; j are holomorphic on QI 4),

wiij)(2) = wij(v(2))  for any v €Ty

Proof. Let « be a differential given by

alz) = (z —1 A —1 B) iZ=7 —iizB— B)

Then for o € I'4, we have

o) —a(B)
a(o(z)) = (z— o YA))(z — o 1(B))

dz.

Then taking A = y(k; ;) and B = y(k;;), and then o~y € T'4/(7} ;). Summing
over all the element in I'4/(v;,;) gives a proof. [
Then we have the following proposition.

Proposition 6.1. The period integrals of the differentials are given by

w _ 17 Zf [Z7j] = [kal]a
wey VL0, [0 d)# R
1
]{ Wikt = 5 I [k, k567 (k) 7 (k)] (6.7)
[

0i.5) YEO D \T A/ (V1))

where [Kij, ki3 7 (kkg), Y(kik)] is the cross ratio given by

(kg — v(Fra)) (K50 — y(Kig))
(kig — v(Fig)) (K50 — v(Krp))

[/fi,j, Kjis V(Hk,l), V(Iﬂ,k)] =

9

which takes p; j when [i, j] = [k, 1] and v € (v} 4)-

Proof. The period integral over aj; j; are obvious, and this implies that wy; j
is normalized. The integral over by; ;) gives a period integral over b-cycle. For a
point a on the isometric circle I('y[;}}), i.e. vuj(a) € I(p,), the integral gives

1 2z — (ki)
/ Wik,i] = i Z In ———<

o Z — Rk
bi.g) YEL A/ (Vik,1)) V(i) “

V4, 4] (a)

1 Z I (7[1:,]:](‘1) -

YET A/ {(Vike,1))
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Here, if [i, j] = [k,(] and v € (v;,), then by (6.1),

(@) = v(me)) (@ — y(mek) _ (Vgi(@) — mij) (@ — K)
(Vg (@) = () (@ = y(kea))  (Vgi(a) = mja)a = ki)

(k1] or v & (V1)

(N

Since lim,,_,o ’Y[TZ-LJ](CL) = Kij, im0 7[;.;.‘](@) = K, if [4, ]
then

(Vi.q1(@) — v v (Kee)
(Vi (@) = (ki) (V1 (@) = ()
};[Z ((”Yﬁf]l( ) — (k) )

(Kij — Y(60)) (K50 — v(kik))
(kij — v(Frk)) (K50 —

I ((’Y[Lj](a) = Vg VB (@ = vy (K

neL

which completes the proof. 0
As the summary of these results, we now give the main theorem.

Theorem 6.2. Given irreducible A € Gr(N,M)sq, a real compact Riemann
surface Ry can be constructed by the Schottky group I's defined in (6.2) with
(6.3), i.e

Ry =Q(I'a)/Ty,
where g = |P1(A)] in (4.3) and QT 4) is the set of discontinuity of I'y. The
U-function defined on R, is given by (2.2) with the period matriz in (6.7).

6.1. From TNN Grassmannians to graphs

In this section, we explain how one can construct the Schottky group by deforming
a singular curve associated with an element A € Gr(N, M), for the KP soliton.

Let us first define an oriented graph A4(V, E) associated with the element
A € Gr(N, M), whose the set of vertices V' and the set of oriented edges E are
given as follows:

(a) V= {UOvvk (k € [M])}7
(b) E:={ex (k€ [M]), e ([i, 1] € P(A)},

where each edge e, is from vy to vy, and ef; j from v; to v;. Then the set of closed
paths e;-ef; j ~e;1 forms the fundamental group (A 4, vy) with the base point vy.
The homological group H;(A4;Z) is then given by abelianization of 7 and the
dimension is dimH;(A,Z) = |P,(A)|. Note that these closed paths are related to
the by j-cycles defined in the J-diagram (see Section 4).

We call algebraic curves defined over R real curves, and construct a singular
real curve C4 with dual graph A4 and a family of real curves R 4 as deformations
of C4. Denote by RP! the real projective line R U {oo} which is identified with
an oriented circle according to the increase of real numbers. Put P,, = RP! with
counter-clockwise orientation, and take points i (k € [M]) on P,, \ {oo} with
the ordering (3.6).
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For each vertex vy (k € [M]), put P,, = RP! with counter-clockwise orienta-
tion, and take points A\, € P,, \ {oo} and \g; € Py, \ {0} if [k, 1] € Pi(A) or
[l,k] € Pi(A) such that \y; < A\ and A\p; < Ags, for I > m. Then the singular
real curve C4 with dual graph A 4 is obtained as a union of P,, and P,, (k € [M])
by identifying

k=X (k€ [M]),  Aij= N ([i,5] € A(A)),

and hence the (arithmetic) genus of C4 is g = |Pi(A)|. For small positive param-
eters v, (k € [M]) and v; ; = v;; ([i,j] € Pi(A)), let R4 be a family of real curves
as deformations of C4 obtained by gluing

Ca \ {neighborhoods of singular points}

under the relations
(20 — ki) (2x — M) = — 1, (6.5)
and
(20 = Aig) (2 — Aja) = =i, (6.6)

where z; are the coordinates of P,,. By these relations, for [i,7] € Pi(A), if
z,w € P,, = RP! are related as

6.5 6.6 6.5
2 € Py, ( zi € Py, ( z; € Py, 2 W € Py,
then we have
v, avi(z — ki) — ViV,
w—K; = — =
J Zj — )‘j (ab + Vi’j)(z — I{Z‘) — bSi

where a = A\; — A;; and b = A\; — \;;. This gives the Mobius transform v : z —
w = 7(z) on P,, with v € PSLy(R),

1 CRj + av; —CRiR; — ViV — ARV — blijVZ'
[ Ay — )
ViVl c —ck; — by,

where ¢ = ab+ v; j. Then introducing the Schottky parameters {x; j, k;;, ft;;} in
terms of {av;,by;, c}, we have v = ;) defined in (6.3). We can also see

Ky — ke = O(v), Wi = @(Vi’/i,j’/j)a

where f = O(g) means that there exists positive constants ¢y, c3 satisfying ¢ |g| <
|f| < c2|g| asymptotically. Therefore, R 4 with sufficiently small vy, v; ; > 0 gives
a family of real curves which are Schottky uniformized by real Schottky groups
'y with free generators ;1 ([7,7] € Pi(A)). Furthermore, under v, v;; — 0,
Kij = ki, Kji — K and (ki) — v(k5:) — 0 for any v € (Da \ (vg))/ (i)
Thereore, the differentials wy; ;) given in (6.4) has the limit

. dz 1 1
Wi j Py - )
(] 2mi \ 2 — K 2 — K
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and by Proposition 6.1, the period matrix has the limit

. . 0 (i=korj=1),
S L e (i, s s k] (0 7 K and j 7 1),

Taking appropriate pairs {c;, 5;} in the normalization in Section 2.1, we recover
the limits in (2.4) and (2.5).

6.2. Quasi-periodic solutions

In this section, we just recall [2] that a quasi-periodic solution can be obtained by
the theta function (2.2) using the Schottky group. In [2] (Section 5.5 in p.160),
the solution u(z,y,t) of the KP equation is given by

u(z,y,t) =202 In 9,(Ulz + Uy + Ut + D; Q4) + 2C

where U* = (U[’f 0 1i,J] € Pa(A)) for k= 1,2,3 are g-dimensional vectors given
by

U[]:',j] = Z (v(kig)* = 7(ks0)") -
vl a/ (v, )

The period matrix €24 is given by (6.7), and D is an arbitrary constant vector.
The constant C' is computed as

o= Y ((ffm' - Hw%/@)é

[i.5]€ P (A) 1= piy

Now it is easy to confirm that the solution u(z,y,t) leads to the KP soliton in
the limit with Kij =7 Ki, Kji = Kj and Hij — 0.

Remark 6.3. In general, our construction of a real compact Riemann surface R
does not give the so-called M-curve [4], which requires that on R, the involution o
must have a mazimum number of orvals chosen from the homological basis. Here
the involution o acts on Hi(R;Z) = (aj,b;;j =1,...,9) by

a(aj):aj, O'(bj):—bj, for ]:1779

In the case that the Riemann surface is not an M-curve, the quasi-periodic solution
of the KP equation is not reqular [4] (Theorem in p.271). We will discuss in more
details in a forth-coming paper [11].

7. Examples
Here we give two examples, and show the fundamental domains F(I'4).

7.1. The cases of Gr(2,4)>¢

(a) The cases with g = 4: Consider the case with the OJ-diagram il)) 71- Then

we have
Pi(A) ={[1,4],[1,3],[2,4],[2,3]}, ie g=4.
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The element 7} ) in the Schottky group I'y are defined by (6.3), where
Kia < R13 < Kog < Koz < R3z2 < K31 < KRg2 < K41.

The fundamental domain F(I"4) is shown in the figure below, that is, F(I"4) is
the domain outside the isometric circles. In the figure, the dots on the real line are
ki, and the b-cycles show the actions of the group elements ~; ;) for [z, j] € Pi(A).

br1.4)
A=y, \/V)/\J

b2,4]

We consider the limit p;; — 0 but keep all xj; distinct. Then the limit
gives a 4-soliton solution of Hirota-type (see e.g. [7]), i.e. 4 line solitons without
resonance. However, this solution is not regular as one can see from the matrix

A obtained by the limit, i.e. A ¢ Gr(4,8)>0 [8],

1 CL[174]
e 1 a[173]
1 a[274]
1 a[273}

where ay; j are nonzero constants, and all other entries except pivots are zero.
The corresponding M-theta function can be computed by follwoing Section 5.
Then taking further limits x; ; — x; and K;; — K;, we obtain the regular solution

with
- 10 CLL3 CL174
A= (0 1 @23 CL2’4>

where a;3,a14 <0, ass,az4 > 0 and ajzas4 — azzar s > 0 for A € Gr(2,4)5

(b) A case with g = 3: Consider the OJ-diagram % 31 which gives

PI(A) = {[17 4]7 [274]7 [27 3]}
The Schottky parameters {x; ;; [i, j] € Pi(A)} are given by

K14 < Kog < Koz < K31 < K42 < HKqp1-

b[1,4
r</ b[2,4]/L/ \
b2,
A XN A
/ o/

N N —/
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The limit with p; ; — 0 (keeping &, ; distinct) gives the matrix

1 a4
A=1 1 afz,4)
L apg)

which gives a 3-soliton solution without resonance (i.e. Hirota-type), and it is
regular if ap 4 > 0, apg4 < 0 and apg > 0. The corresponding matrix A €

GI‘(2, 4)20 is
i 1 0 0 Q1.4
A= (0 1 @23 CL214>

where a1 4 < 0 and ag3,a24 > 0. We also note that the quasi-periodic solution is
regular, and the Riemann surface in this case is an M-curve of genus 3.

7.2. A case in Gr(5,9)>¢

Here we just illustrate the fundamental domain F(I'4) for Example 4.4 (see the
figure below). The quasi-periodic solution associated with the Riemann surface
uniformized by the Schottky group may not be regular.

1 2 3|4 |5 6 7 8 9

S /67333 S r\)‘\

S Nt NG 5 mu N N o N Nt Nt
Kiq Kag Kis Kg Kujjj Ky,

D
)
¢’
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