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Abstract

In this presentation, we give a structure theorem for projective manifolds W0 with
the property of admitting a 1-parameter deformation where Wt is a hypersurface
in a projective smooth manifold Zt. Their structure is the one of special iterated
univariate coverings which we call of normal type. We give an application to
the case where Zt is a projective space, respectively an abelian variety. We also
give a characterizaton of smooth ample hypersurfaces in abelian varieties and
describe an irreducible connected component of their moduli space. All works
in this presentation have been carried out by the joint research with Fabrizio
Catanese. This presenation is based on two papers [5], [6].

Many years ago Sernesi [9] showed that small deformations of complete intersections in
projective space, of dimension n ≥ 2 (the case of curves, n = 1 is of quite different nature),
are again complete intersections, unless the complete intersection defines a K3 surface (i.e.,
n = 2 and the canonical bundle is trivial). Hence, in particular, smooth hypersurfaces in
projective space Pn+1 form an open set in the Kuranishi space, respectively an open set in
the moduli space when they are of general type, unless n = 2 and the degree equals 4. In
considering the closure of this set in the moduli space, we have to deal with varieties W0 of
the same dimension, given together with a generically finite rational map φ0 : W0 99K Pn+1.

As shown by Horikawa in [7], already in the easiest nontrivial case n = 2, deg(W0) = 5
the situation becomes rather complicated. But we show here that things are simpler in the
case where φ0 is a morphism.

A similar result to Sernesi’s holds for hypersurfaces in an Abelian variety (Kodaira and
Spencer’s theorem 14.4 in [8]), and we can consider the closure of the locus of hypersurfaces X
in Abelian varieties (for n ≥ 2 the Abelian variety is just the Albanese variety of X) observing
that in this case any limit W0 has a generically finite Albanese map φ0 : W0 → A0 (see for
instance Lemma 149 of [4]). Also in this case we can ask the question of characterizing the
morphisms φ0 admitting a deformation which is a hypersurface embedding in some Abelian
variety, deformation of the original one.

To illustrate our main result, let us consider two simple examples, the first one where
the image of W0 is the smooth hypersurface X := {σ = 0} ⊂ Pn+1, σ being a homogeneous
polynomial of degree d. We let thenW0 be the complete intersection in the weighted projective
space P(1, 1, . . . , 1, d) defined by the equations

W0 = {(z0, z1, . . . , zn+1, w)|σ(z0, z1, . . . , zn+1) = 0,

P (z0, z1, . . . , zn+1, w) := wm +

m∑
i=1

wm−iai(z0, z1, . . . , zn+1) = 0}. (1)

We can easily deform the complete intersection by deforming the degree d equation adding
a constant times the variable w, hence obtaining the following complete intersection:

P (z0, z1, . . . , zn+1, w) = 0, tw − σ(z0, z1, . . . , zn+1) = 0, t ∈ C.
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Clearly, for t = 0 we obtain the previous W0, a degree m covering of the hypersurface
X = {σ = 0}, whereas for t 6= 0 we can eliminate the variable w and obtain a hypersurface
Wt in Pn+1 with equation (of degree md)

P (z0, z1, . . . , zn+1, σ(z)/t) = 0.

Example 0.1 (Iterated weighted deformations).

Now, one can iterate this process, and consider, in the weighted projective space

P(1, 1, . . . , 1, d, dm1, . . . , dmk), m1|m2| . . . |mk,

a complete intersection W of multidegrees (d, dm1, . . . , dmk, dm),

where mk|m =: mk+1.

Then, necessarily, there exist constants t0, t1, . . . , tk such that the equations of W have
the following form, where the Qj’s are general weighted homogeneous polynomials of degree
= dmj (in particular we assume them to be monic, so that the rational map to projective
space is a morphism): 

σ(z) = w0t0

Q1(w0, z) = w1t1

· · · · · ·
Qk(w0, . . . , wk−1, z) = wktk

Qk+1(w0, . . . , wk, z) = 0.

(2)

Again, if all the tj’s are 6= 0, we can eliminate the variables wj, and we obtain a hyper-
surface in Pn+1.

To generalize the above description, we need to introduce the following terminology.

Definition 0.2
i) Given a complex space (or a scheme) X, a univariate covering of X is a hypersurface Y ,
contained in a line bundle over X, and defined there as the zero set of a monic polynomial.

This means, Y = Spec(R), where R is the quotient algebra of the symmetric algebra over
an invertible sheaf L, Sym(L) = ⊕i≥0L⊗i, by a monic (univariate) polynomial:

R := Sym(L)/(P ), P = wm + a1(x)wm−1 + a2(x)wm−2 + · · ·+ am(x).

Here aj ∈ H0(X,L⊗j). The univariate covering is said to be smooth if both X and Y are
smooth.

ii) An iterated univariate covering W → X is a composition of univariate coverings

fk+1 : W → Xk, fk : Xk → Xk−1, . . . , f1 : X1 → X,

whose associated line bundles are denoted Lk,Lk−1, . . . ,L1,L0.

iii) In the case where X ⊂ Z is a (smooth) hypersurface, we say that the iterated univariate
covering is of normal type if

• all the line bundles Lj are pull back from X of a line bundle of the form OX(mjX),
and moreover

• m1|m2| . . . |mk, and the degree of fj equals
mj

mj−1
.



• we say that the iterated covering is normally induced if moreover all the coefficients
aI(x) of the polynomials

Qj(w0, . . . , wj−1, x) =
∑
I

aI(x)wI

describing the intermediate extensions are sections of a line bundle OX(r(I)X) coming
from H0(Z,OZ(r(I)X)).

Remark 0.3 The property that the iterated univariate covering W → X is normally induced
clearly means that it is the restriction to X of an iterated univariate covering of Z.

The property that the former is smooth does not necessarily imply that also the latter is
smooth.

Definition 0.4 A 1-parameter deformation to hypersurface embedding consists of
the following data:

1. a one dimensional family of smooth projective varieties of dimension n (i.e., a smooth
projective holomorphic map p : W → T where T is a germ of a smooth holomorphic
curve at a point 0 ∈ T ) mapping to another family π : Z → T of smooth projective
varieties of dimension n+ 1 via a relative map Φ :W → Z such that π ◦Φ = p (hence
we have the following commutative diagram)

W Φ //

p
��7777777 Z

π
���������

T,

such that moreover

2. for t 6= 0 in T , Φt is an embedding of Wt := p−1(t) in Zt,

3. the restriction of the map Φ on W0 is a generically finite morphism of degree m, so
that the image of Φ|W0 is the cycle Σ0 := mX where X is a reduced hypersurface in Z0,
defined by an equation X = {σ = 0}.

Put in concrete terms, one can take a local coordinate t for T at 0, and write, locally
around {t = 0} the equation of the image Σ := Φ(W) in Z via the Taylor series development
in t, in terms of local coordinates z = (z1, . . . , zn, zn+1) on Z0,

Σ(z, t) : σ(z)m + tσ1(z) + t2σ2(z) + · · ·+ tm−1σm−1(z) + . . . = 0 (?).

W is a resolution of Σ and the next theorem indicates exactly the sequence of blow-ups
needed in order to obtain the resolution W.

Theorem 0.5 (A) Suppose we have a 1-parameter deformation to hypersurface embedding

W Φ //

p
��8888888 Z

π
���������

T.

and assume that KW0 is ample.
Then we have:
(A1) X is smooth,



(A2) There are line bundles L0, . . . ,Lk on Z, such that Lj |Z0 = OZ0(mjX) for j =
0, . . . , k, with 1 = m0|m1|m2 . . . |mk|mk+1 := m (here m is the degree of the morphism
Φ0 : W0 → X), and such that W0 is a complete intersection in L0 ⊕ · · · ⊕ Lk|Z0, with Φ0 a
normally induced iterated smooth univariate covering .

(A3) W is obtained from Σ := Φ(W) by a finite sequence of blow-ups.

Moreover the local equations of W are of the following standard form

σ(z) = w0t

Q1(w0, z) = w1t

· · · · · ·
Qk(w0, . . . , wk−1, z) = wkt

Qk+1(w0, . . . , wk, z, t) = 0.

(3)

(B1) Conversely, take any smooth iterated univariate covering of normal type

φ0 : W0 → X ⊂ Z0

and take any 1-parameter family Z of deformations of Z0.

Then the line bundle OZ0(X) extends to a line bundle L0 on the whole family Z. And
W0 deforms to a hypersurface embedding if, for all i ≥ 2, every section in H0(Z0,OZ0(iX))
and every section in H0(X,OX(iX)) comes from a section in H0(Z,L⊗i0 ).

(B2) This holds in particular, when the family Z is trivial, Z ∼= Z0 × T , if the necessary
condition of being normally induced is fulfilled.

Remark 0.6 (b1) More precisely, in (B1) above, there is a family W such that W is a
complete intersection in L0 ⊕ · · · ⊕ Lk (Li = L⊗mi

0 ), and W is given as above; moreover, for
t 6= 0 in T , the morphism Φt, induced on Wt by the bundle projection on Zt, is an embedding.

(b2) sufficient condition in (B2) is the surjectivity of H0(Z0,OZ0(iX))→ H0(X,OX(iX))
for i ≥ 2; this is implied by H1(Z0,OZ0(iX)) = 0, ∀i ≥ 1.

Remark 0.7 The line bundle OZ0(X) extends to a line bundle L0 on the whole family Z,
because of the Lefschetz (1,1) theorem, since OZ0(mX) does.

Observe moreover that there is a (non-canonical) isomorphism

Pic0(Z0) ∼= Pic0(Zt),

whereas in general there is no isomorphism of Pic(Z0) with Pic(Zt).

The following two lemmas, and the fact that the resolution of a plane curve is obtained
by a finite sequence of blow-ups, play an important role in the proof of theorem 0.5.

Lemma 0.8 Suppose we have a one dimensional smooth family p : W → T of smooth
projective varieties of dimension n mapping to another flat family q : Y → T of projective
varieties of the same dimension via a relative map Ψ : W → Y over a smooth holomorphic
curve T such that q ◦Ψ = p, i.e. we have the commutative diagram

W Ψ //

p
��7777777 Y

q
��������

T.

Assume that

1. Y is normal and Gorenstein,



2. Ψ is birational,

3. for t 6= 0 in T , Ψ induces an isomorphism,

4. KW0 is ample.

Then we have that Ψ is an isomorphism, in particular W0
∼= Y0.

Lemma 0.9 In the hypotheses of theorem 0.5, we have that σm−i |σi for i = 1, . . . ,m− 1 in
the equation (?).

We make use the above theorem to characterize the deformations of morphisms to hyper-
surface embeddings. This result is particularly suitable in order to analyze when does the
Albanese map deform to a hypersurface embedding.

Thus we can study the moduli space of compact Kähler manifolds diffeomorphic to ample
hypersurfaces in Abelian varieties, essentially showing that we get a connected component of
the moduli space once we add to the Hypersurfaces of a given dimension n, and of a given
polarization type, the iterated univariate coverings of normal type.

More precisely, we have the following main results that characterize smooth ample hyper-
surfaces in Abelian varieties.

Let A be an Abelian variety of dimension n + 1, and let X ⊂ A be a smooth and
ample divisor, whose Chern class is a polarization of type (d1, d2, . . . , dn, dn+1), where di|di+1,
∀i = 1, . . . , n.

We assume throughout that n = dim(X) ≥ 2, so that Lefschetz’ theorem says that

1. π1(X) ∼= π1(A) ∼= Z2n+2 =: Γ;

2. Λi(Γ) = H i(A,Z) → H i(X,Z) is an isomorphism for i ≤ n − 1, and is injective for
i = n;

3. Hi(X,Z)→ Hi(A,Z) is an isomorphism for i ≤ n− 1, and is surjective for i = n.

We consider now a projective manifold which is diffeomorphic to X, actually some weaker
hypotheses are sufficient:

• (a) Assume that Y is a complex projective manifold, or

• (a’) Assume that Y is a cKM = compact Kähler Manifold, and that

• (b) Y is homotopically equivalent to X, or

• (b1) there is an isomorphism αY : π1(Y ) → Γ and an isomorphism ψ : H∗(Y,Z) ∼=
H∗(X,Z) such that, letting αX : π1(X) → Γ the analogous isomorphism, then ψ ◦
H∗(αY ) = H∗(αX); i.e., ψ commutes with the homomorphisms to H∗(Γ,Z) induced by
the classifying maps for αY , αX respectively, or

• (b2) the same occurs for homology: there are isomorphisms φi : Hi(X,Z) → Hi(Y,Z)
commuting with Hi(αY ), Hi(αX), or

• (b’) : there is an isomorphism αY : π1(Y )→ Γ = Z2n+2 such that, denoting by aY the
corresponding classifying map,

• (b’1): (aY )∗[Y ] is dual to a polarization of type d, and

• (b’2): H2(aY ,Z) is an isomorphism.

Observe that Hypothesis (a) implies (a’), Hypothesis (b) implies (b1), (b1) implies (b2)
by Poincaré duality, and (b2) implies (b’), (b’1) and (b’2).



Remark 0.10 Assume Hypotheses (a’), (b’), (b’1) and (b’2) above.
Then
I) the Albanese map aY : Y → Alb(Y ) =: A′ has image Σ which is an ample hypersurface,

indeed (aY )∗(Y ) = deg(aY )Σ is the dual class of a polarization of type (d1, . . . , dn+1).
II) a) holds, i.e. Y is a projective manifold,
III) if n ≥ 3, then aY is a finite map.

Remark 0.11 When n = dim(Y ) = 2 it can indeed happen that aY is not finite: since we
may take Σ to be a hypersurface with Rational Double Points, and by Brieskorn-Tyurina’s
theorem, the minimal resolution of singularities Y is diffeomorphic to a smooth deformation
X of Σ.

The following characterization of smooth ample hypersurfaces in Abelian varieties is a
refinement of a theorem obtained in [1]: in particular here the hypothesis that KY is ample
is removed:

Theorem 0.12 Assume that X is a smooth ample hypersurface in an Abelian variety, of
dimension n ≥ 2.

Assume that Y is a compact Kähler manifold which satisfies the topological conditions
(b’), (b’1) and (b’2) above.

Moreover, for n ≥ 3, assume either:
(I) Kn

Y = Kn
X = d1 . . . dn+1(n+ 1)!, or

(II) pg(Y ) = pg(X) = d1 . . . dn+1 + n.
Whereas, for n = 2, assume either the topological condition (b1), or (I) above.
Denote the image of aY by W , and assume either that
(i) the class of X is indivisible (i.e., d1 = 1), or the following consequence:
(ii) the degree of the map aY : Y →W equals 1
Then, for n ≥ 3, the Albanese map aY yields an isomorphism:

aY : Y ∼= W.

Whereas, for n = 2, aY is the minimal resolution of singularities of a canonical surface, i.e.,
a surface with Rational Double Points as singularities, and with ample canonical divisor.

Theorem 0.13 Let n ≥ 2 and d := (d1, d2, . . . , dn+1) be a polarization type for complex
Abelian Varieties.

Then, for n ≥ 3, the smooth hypersurfaces of type d in some complex Abelian variety
and the smooth Iterated Univariate Coverings of Normal Type and of type d form an irre-
ducible connected component of the moduli space of canonically polarized manifolds, and also
an irreducible connected component of the Kähler-Teichmüller space (of any such smooth
hypersurface X).

For n = 2 we need also to include the minimal resolutions of such surfaces which have
only Rational Double Points as singularities.

For d1 = 1 there is only this connected component of the Kähler-Teichmüller space if

• n = 2 or if

• we restrict ourselves to compact Kähler manifolds Y with Kn
Y = (n+ 1)!d1d2 . . . , dn+1,

or if

• we restrict ourselves to compact Kähler manifolds Y with pg(Y ) = d1d2 . . . , dn+1 + n.

The Kähler-Teichmüller space is the open set of Teichmüller space corresponding to the
Kähler complex structures (see [3] for general facts about Teichmüller space). In special
situations (see [2]) it is a connected component of Teichmüller space.
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