
A motivic formalism in representation theory
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This talk owes a huge debt to my coauthor Jens EBERHARDT, who painstakingly
explained all the representation theory in it to me. All errors are my own.

1. Representation theory
1.1. General background

In this talk, G is always a connected reductive linear algebraic group, equipped with
a choice of Borel subgroup B and a split maximal torus T . We always work over
an algebraically closed field k = k, but we assume that G,B, T are defined over the
integers Z. In at least one equation, the two base changes G(C) and G(Fp) to C and
Fp will appear in the same formula.

Example 1. Examples of such groups are the following. Set B =


1

−1
1

−1

. .
.

.

1. Tn ∼= Gn
m = { invertible diagonal n× n matricies },

2. SLn = { n× n matricies M such that detM = 1},

3. Sp2n = { 2n× 2n matricies M satisfying M tBM = B}

4. SO2n+1 = { (2n+1) × (2n+1) matricies M which satisfy both M tBM = B and
detM = 1}

All of the above choices for G have a canonical choice of B and T :

B = {M ∈ G : M is upper triangular } and

T = {M ∈ G : M is diagonal }.

One of the principle objects of study in representation theory are algebraic repre-
sentations. That is, actions of G

G× V → V

on a finite dimensional k-vector space that are defined via polynomials.

Example 2. Given a character, i.e., an algebraic action λ : T × V → V of T on the
1-dimensional k-vector space V , we can extend T to an action B × V → V using the
canonical retraction B → T . Then the quotient of G× V by the diagonal action of B
defines a vector bundle O(λ) on the variety of cosets G/B. The global sections of this
vector bundle have a canonical algebraic G-action, induced by the action of G on the
left component of G× V . In this way, we obtain algebraic representations

∇(λ) = Γ(G/B,O(λ)).

These are called standard representations.
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Example 3. In the case G = SL2 there is a canonical isomorphism G/B ∼= P1 sending
[a
c
b
d
] ∈ SL2 to (a : c) ∈ P1. The elements of B ⊆ SL2 have the form [a

0
b

1/a
]. For each

n ∈ Z and vector space V , there is the B-action

λn : ([a
0

b
1/a

], v) 7→ anv.

If dimV = 1, every action is of this form. Under the isomorphism G/B ∼= P1, the
vector bundle O(λn) on G/B corresponds to the standard line bundle O(n) on P1. In
particular, we have

∇(λn) = k[x, y]n := { homogeneous polynomials of degree n}

with the SL2-action

([a
c
b
d
], f(x, y)) 7→ f([a

c
b
d
]
−1

(x, y)) = f(dx−by, ay−cx).

Remark 4. In the above example note that ∇(λn) = 0 if n < 0. Characters λ such
that ∇(λ) 6= 0 are called dominant, [Jan07, Prop.2.6].

Remark 5. In the above example, if char k = p and n > p, then the representation
k[x, y]n has the nonzero subrepresentation k[xp, yp]n consisting of those homogeneous
polynomials of degree n whose terms are powers of p. For example, if n = p, then
{αp,0x

p + α0,py
p} ⊆ {

∑
i+j=p αi,jx

iyj} is G-invariant.

A representation G× V → V is called irreducible if the only G-invariant subspaces
W ⊆ V are {0} and V .

Theorem 6 ([Jan07, Cor.2.3, Cor.2.7]). For every character λ : T × V → V , there is
a unique nonzero irreducible subrepresentation

L(λ) ⊆ ∇(λ).

If char k = 0, then L(λ) = ∇(λ). In general, every irreducible representation is of the
form L(λ) for some λ.

Every representation can be built from irreducible representations.

Theorem 7 (Jordan–Hölder). If M is a representation, there exists a sequence 0 =
M−1 ( M0 ( M1 ( · · · ( Mn = M such that Mi/Mi−1 is irreducible. The set of
factors Mi/Mi−1 is independent of the chosen sequence.

We write [M : L(λ)] for the number of times the irreducible representation L(λ)
occurs as a subquotient of M .

Question A (Major goal of representation theory). Given two characters ν, µ : T ×
V → V , calculate the number [∇(ν) : L(µ)] of times L(µ) appears as a subquotient of
∇(ν).

1.2. Further remarks

Remark 8. In fact, both the set {[∇(λ)]} of classes of standard representations, and
the set {[L(λ)]} of classes of irreducible representations form a basis for K0(RepG), the
Grothendieck group of the category of representations.

Z
{

[∇(λ)]

}
∼= K0(RepG) ∼= Z

{
[L(λ)]

}
(1)

With this in mind, Question A can be phrased as:



Question A′. Calculate the change of basis matrix of the isomorphism (1).

Remark 9. Given a representation G × V → V , we can restrict to a representation
T × V → V . Since T ∼= Gn

m (for some n), we haveK0(RepT ) ∼= Z[e1, . . . , en, e
−1
1 , . . . , e−1n ].

This is the polynomial algebra in n variables with all variables inverted, and ei corre-
sponds to the one dimensional representation ((a1, . . . , an), v) 7→ aiv.

The Weyl character formula gives an expression for

im([∇(λ)]) ∈ K0(T ) ∼= Z[e1, . . . , en, e
−1
1 , . . . , e−1n ]

for any λ : T × V → V . This follows from an upper-triangularity argument involving
the highest weights λ in ∇(λ). In fact the restriction map K0(RepG) → K0(RepT ) is
injective, hence another equivalent expression for Question A above is:

Question A′′. Compute the image of [L(λ)] under the restriction homomorphism
K0(RepG)→ K0(RepT ) ∼= Z[e1, . . . , en, e

−1
1 , . . . , e−1n ].

Remark 10. Note: these contain a lot of information. E.g., the modular characters of
Symn are encoded in the im([L(λ)]) ∈ K0(T ) for SLn(Fp) (by a version of Schur-Weyl
duality, and the Weyl character formula).

1.3. The modular category O (for char k > 0)

The category RepG of representations suffers a number of problems. For example:

1. There are infinitely many (isomorphism classes of) irreducibles.

2. There are no nonzero projective objects.

Soergel introduced a modification of RepG which has nicer properties.

“Definition” 11. The modular category O def
= A/N is a “nice” subquotient of RepG.

That is, for a well-chosen pair of Serre abelian subcategories 0 ⊆ N ⊆ A ⊆ RepG
that we will describe later, O is the quotient abelian category A/N . So objects of O
are objects of A, and morphisms of O are equivalence classes of “roofs” x

s← x′ → y
of morphisms in A, such that ker s ∈ N , coker s ∈ N . For more information about
quotients of Serre abelian categories see [Stacks, Tag 02MN]. Note that there is a
canonical functor

A→ A/N = O; M 7→M,

sending a representation to itself, but considered now as an object of O.
The subcategories A,N (which we will describe later) are chosen such that O has

the following nice properties:

1. There are finitely many simple objects in O. In fact, the simple objects of O are
in canonical bijection with elements of the Weyl group W = NG(T )/T . So, for
example, in the case of G = SLn, they are parametrised by the symmetric group
Symn.

2. O has enough projectives. Moreover, for every character µ : T × V → V such
that L(µ) ∈ A, there is a “smallest” epimorphism from a projective object in O.
We write

P (µ)→ L(µ)



for this projective object P (µ) ∈ O. Moreover, these projective objects admit a
flag 0 = F−1 ( F0 ( F1 ( · · · ( Fn = P (µ) such that each subquotient (in O)
is isomorphic (in O) to the image ∇(ν) of a standard representation. Finally,
[∇(ν) : L(µ)] is equal to the number [P (µ) : ∇(ν)] of i such that ∇(ν) ∼= Fi/Fi−1.

[∇(ν) : L(µ)] = [P (µ) : ∇(ν)].

Note that if one can compute [∇(ν) : L(µ)] for ν, µ such that L(µ),∇(ν) ∈ A, a
formula should be easily generalisable to all representations.

Remark 12. By BGG reciprocity, [Irv90],

Z
{

[P (µ)] : L(µ) ∈ A
}
∼= K0(O) ∼= Z

{
[L(µ)] : L(µ) ∈ A

}
. (2)

That is, the projective objects P (µ) form a basis for the Grothendieck group of O
(there is some redundency here, because L(µ) ∈ N means P (µ), L(µ) is zero).

The complete definition of A and N involves the introduction of a lot of notation,
but we give an idea about it here.

Idea 13. The idea for the definition of O is the following. There is a canonical shifted
p-dilated action ·p : W ×X → X (which we do not describe here) of the Weyl group
W = NG(T )/T on the lattice of characters X = {actions T × V → V : dimV = 1}.
Moreover, there is a canonical orbit W ·p ξ = {x ·p ξ : x ∈ W} for this action (ξ ∈ X
is some fixed canonical element). We want to define A as the full subcategory of
representations whose irreducible subquotients lie in W ·p ξ. However this is not a
Serre abelian category, so we define

A := the smallest full Serre abelian subcategory of RepG containing the irre-
ducible representations {L(x ·p ξ) : x ∈ W}.

The problem with A is that in addition to the irreducible representations L(x ·p ξ), it
also contains other irreducible representations. This is where N comes in.

N := the smallest full Serre abelian subcategory of A containing the irreducible
representations not in {L(x ·p ξ) : x ∈ W}.

The properties of O are more important to us than the precise definition, so we
direct the reader to [Jan07] for the precise definition of ·p and ξ (there ξ is denoted
st+ λ).

1.4. Perverse sheaves

Now we move the focus to geometry. As an algebraic variety, the variety of cosets G/B
is particularly simple. It has a canonical decomposition into locally closed subvarieties

G/B =
⋃
x∈W

BxB/B

indexed by the Weyl group W = NG(T )/T . Moreover, for each x ∈ W there is an
isomorphism BxB/B ∼= Anx for some nx. For example, in the case G = SL2, this



is the canonical decomposition P1 = A1 ∪ {∞}. However, the combinatorics of how
these strata sit together contains a lot of information about the representation theory
of G. As such, the geometry of G/B can be used in a very strong way to study the
representation theory of G.

For example, Soergel’s proof of the Kazhdan-Lusztig conjecture (for k = C) uses
an isomorphism⊕

i

homDb((G/B)(C),C)(ICx, ICy[i]) ∼= homO0(P (x), P (y)). (3)

Here, (G/B)(C) is the variety of complex points of G/B considered as a stratified
space, Db((G/B)(C),C) is the category of C-valued sheaves on (G/B)(C), the object
ICx is the intersection complex associated to the closure BxB/B ⊆ G/B of the stratum
BxB/B, x, y ∈ W , and O0, P (x), P (y) are the complex Lie algebra inspirations for O
and P (µ) from above.

Remark 14. The isomorphism (3) uses the decomposition theorem which says that
for any smooth proper map f : X → Y between algebraic varieties, the derived push-
forward Rf∗C of the constant sheaf on X decomposes in Db(Y,C) into the sum of its
cohomology sheaves Rf∗C ∼= ⊕d

i=−dR
d+if∗Q[−d− i].

Remark 15. If char k = p and we use sheaves of Fp-vector spaces instead of sheaves
of C-vector spaces, the decomposition theorem is false!

Soergel’s approach to the positive characteristic Lusztig’s conjecture is to replace
ICx with parity sheaves. A complex E ∈ Db((G/B)(C),Fp) is even if its cohomology on
each stratum vanishes in odd degrees. It is odd if E[1] is even. It is parity if E = E0⊕E1

for some even complex E0 and odd complex E1. See [Wil18] for more details. Using
parity sheaves in place of intersection complexes, one obtains an Fp-linear version of
(3). ⊕

i

homDb((G/B)(C),Fp)
(Ex, Ey[i]) ∼= homO(P (µx), P (µy)) (4)

Here, P (µ) are in the modular category O described above.

A natural question is the following:

Question 16. Can we upgrade (4) to a sheaf description of all of O?

2. Motivic sheaves
2.1. Motives

Sheaves and sheaf cohomology on algebraic varieties often comes equipped with extra
structure that is extremely useful. In fact, D-modules and perverse sheaves are the
backbone of geometric representation theory. For example, D-modules and perverse
sheaves are used in Beilinson–Bernstein’s, Brylinski–Kashiwara’s proof of the Kazhdan-
Lusztig conjecture, as well as many other places in representation theory. Similarly, in
the Weil conjectures which motivated the development of étale cohomology, the action
of the absolute Galois group of the base field on the étale cohomology plays a vital
rôle.

Indeed, there is a strong analogy between Hodge structures and Galois represen-
tations. In order to make this analogy concrete, Grothendieck introduced the notion
of motives. Loosely speaking, a motive is an object which contains information about



the Hodge theory, the Galois representations, and even the F -crystal associated to a
variety (see [Del89] for a definition of motives in terms of this data). Moreover, just
as families of Hodge structures and Galois representations are expressed in terms of
sheaves, there is also a relative theory of motives.

First let us describe the rational coefficients theory which is a little simpler. In this
case, one can ([Ayo14], [CD19], [Rob12], [Voe00]) define the category of motives over
a base variety S as the universal functor

M : Sm/S → DA(S)

towards a Q-linear tensor triangulated category1 satisfying:

1. (A1-invariance) M(A1 × S) ∼= M(S). Heuristically, the cohomology of A1 should
be trivial.

2. (Excision) If U → X is an open morphism, and f : V → X an étale mor-
phisms such that f−1(X \ U) ∼= X \ U , then there is a distinguished triangle

M(U×XV )→ M(U)⊕M(V )→ M(X)
+→. Heuristically, if V → X is a “tubu-

lar” neighbourhood of Z = X \ U , then the relative cohomology of (V, (V \ Z))
is the same as the relative cohomology of (X,U).

3. (Stability) Ker(M(P1
S)→M(S)) is tensor invertible. Heuristically, the second

cohomology vector space of P1 should be one dimensional. One writes Q(1) for
Ker(M(P1

S)→M(S))[−2] and Q(n) for its n-fold tensor powers, n ∈ Z.

4. (Galois descent) For any finite étale Galois cover Y/X with Galois group G, we
have M(Y )G ∼= M(X).

Remark 17. One can think about objects of DA(S) as something resembling families
of Hodge structures or Galois representations, and the functor M sends a smooth S-
variety f : X → S to Rf!Q. Indeed, if ` 6= char k, by the universal property in the
definition we gave, there is a canonical tensor triangulated functor

DA(S)→ Det(S,Q`)

towards the `-adic category of S sending M(X
f→S) to Rf!Q`. If ` = char k, and we

use Fp-linear categories instead of Q-linear, then of course the étale cohomology of A1

is nontrivial, and there is no such functor. If char k = 0 there is also the analogous de
Rham realisation functor, cf. [Ayo15].

Amazingly, one can deduce very strong properties from just these four axioms.
Similar to `-adic cohomology, for every morphism f : X → Y of varieties, we have the
following adjunctions, where E is any object of DA(X). We write f∗ instead of Rf∗
etc, because from now on we only deal with “derived” functors.

f ∗ : DA(Y ) � DA(X) : f∗

f! : DA(X) � DA(Y ) : f !

−⊗ E : DA(X) � DA(X) : Hom(E ,−)

1Strictly speaking, one must use infinity categories for this style of definition.



These adjunctions satisfy a number of nice properties such as smooth base change,
proper base change, purity, Verdier duality, a projection formula, . . . , [Ayo07]. Fur-
thermore, just as

homDet(X,Q`)(Q`,Q`(i)[j]) ∼= Hj
et(X,Q`(i))

in the étale theory, we have, [Kel17], [Voe00],

homDA(S)(Q,Q(i)[j]) ∼= CH i(X, 2i−j;Q),

where the groups on the right are Bloch’s higher Chow groups, [Blo86], with Q-
coefficients, Q = M(S) is the tensor unit, and Q(i)[j] is the jth shift of the ith tensor
power of Ker(M(P1

S)→M(S))[−2].
When char k = p > 0 and we use Fp-linear categories, one considers the universal

category DA1(S,Fp) as defined above, but only satisfying axioms (1) ∼ (3).2 The
category DA1(S,Fp) does not have quite the right hom groups for our representation
theoretic purposes. However, there is a monoid object (the object representing Milnor
K-theory with Fp-coefficients)

K ∈ DA1(S,Fp)

such that the category of K-modules

H(S) := K−mod

has the right hom groups. Indeed, leveraging work of Geisser-Levine [GL00] we have3

homH(S)(Fp,Fp(i)[j]) = CH i(S, 2i−j;Fp).

Specifically, the property we need is:

homH(An
Fp

)(Fp,Fp(i)[j]) =

{
Fp (i, j) = (0, 0)
0 (i, j) 6= (0, 0)

(5)

Again, we have the six functors

f ∗ : H(Y ) � H(X) : f∗

f! : H(X) � H(Y ) : f !

−⊗ E : H(X) � H(X) : Hom(E ,−)

satisfying smooth base change, proper base change, purity, Verdier duality, a projection
formula, . . . , [Ayo07], [CD19].

Remark 18. Again, strictly speaking, one must use infinity categories if one wants to
use these specific definitions. Indeed, for a general monoid M in a tensor triangulated
category the category of M -modules is rarely triangulated. If the reader does not enjoy
infinity categories, there is a perfectly concrete construction of K−mod as a Verdier
quotient of the derived category of an abelian category. I.e., a construction which uses
only homological algebra from 1967. See [EK19] for this construction explained in
detail.

2 Indeed, if one asks for Galois descent in the presence of A1-invariance, then by the Artin-Schreier
sequence, one obtains the zero category.

3This isomorphism holds when S is smooth; one would have this formula in general if resolution of
singularities was known in positive characteristic.



Remark 19. The category H(S) = K−mod is essentially modules over the motivic
Eilenberg-Maclane spectrum with Fp-coefficients HFp. Indeed, if resolution of singu-
larities holds over Fp, it can be shown that H(S) is equivalent to Voevodsky’s category
of motives DM(S,Fp). However, we wanted to make the category as accessible as
possible to non-algebraic geometers, and so we choose to use Milnor K-theory instead
in order to avoid any discussion of correspondances or cycles.

2.2. Mixed Tate motives

The category of all motives is too big, so now we restrict our attention to motives
which are “locally constant along a stratification”.

Definition 20. An affinely stratified variety is a variety X with a finite partition S
into locally closed subvarieties (called the strata of X)

X =
⋃
s∈S

Xs

such that each stratum Xs is isomorphic to An for some n, and the closure Xs is a
union of strata. The embeddings are denoted by js : Xs ↪→ X.

Example 21. The motivating example we have in mind is G/B with the stratification
G/B = ∪x∈WBxB/B. For SL2 this is P1 = A1 q {∞}. For SLn it is the flag variety.

Definition 22. The category of mixed Tate motives on X, is the smallest full trian-
gulated subcategory of H(X) containing the motives Fp(i)[j].

MTDer(X) = 〈Fp(n)[j]〉 ⊂ H(X,Fp).

and the category of stratified mixed Tate motives on (X,S) is

MTDerS(X) = {M ∈ H(X,Fp) : j∗sM ∈ MTDer(Xs) ∀ s ∈ S}.

In other words, the category of motives which are mixed Tate along each Xs.

Remark 23. Notice that if we ran the above definition with the category Det(X,Q`)
instead of H(X), we obtain complexes of constructible sheaves.

Remark 24. If we consider An as an affinely stratified variety with a single stratum,
then

MTDerS(An) = MTDer(An).

Moreover, by the vanishing (5) mentioned above, there is a canonical equivalence be-
tween MTDerS(An) and the bounded derived category of graded Fp-vector spaces,

MTDerS(An) ∼= Db(Fp-vec.sp.Z).

This equivalence sends Fp(i) to the one dimensional vector space of weight i. In par-
ticular, it makes sense to talk about the dimension of objects of MTDerS(An).

The subcategory of stratified mixed Tate motives is of great interest in representa-
tion theory. Using Soergel’s results one can prove the following.

Theorem 25 ([EK19]). Let G be a semisimple simply connected split algebraic group
over Fp and G∨ the Langlands dual group. Then there is an equivalence of categories

MTDer(B∨)(G
∨/B∨)

∼→ Derb(O2Z(G))

between the category of stratified mixed Tate motives on G∨/B∨ and the derived evenly
graded modular category O2Z(G).



Remark 26. We have to assume that both the torsion index of G is invertible in Fp

and p is bigger than the Coxeter number of G.

Remark 27. The category O2Z(G) is a graded version of the category O we discussed
above.

2.3. Application

Now we come back to the numbers [∆(ν) : L(µ)] that we were interested in in the
beginning. We begin with the following.

Proposition 28. For all morphisms f : X → X ′ of interest to us, the adjunctions

(f!, f
!), (f ∗, f∗), (⊗,Hom)

restrict to MTDerS(X),MTDerS ′(X
′).

Some examples of such morphisms that we have in mind are the following.

Example 29. Consider (SLn/B,B) where B is the Bruhat stratification. For all s ∈ B,
we have the “skyscraper sheaf”

js!Fp ∈ MTDerB(SLn/B).

Example 30. For any parabolic subgroup B ⊆ P ⊆ SLn we have the projection

π : SLn/B → SLn/P.

Then we have an endofunctor

π∗π∗ : MTDerB(SLn/B)→ MTDerB(SLn/B).

Let us now combine the two examples above.

Example 31. Let s be a simple reflection in the Weyl group W = NGT/T ∼= Symn

of SLn. Let Ps be the parabolic subgroup associated to s, consider the P1-bundle
πs : G/B → G/Ps, and consider its associated endofunctor

Πs = π∗sπs∗ : MTDerB(SLn/B)→ MTDerB(SLn/B).

For any decomposition w = s1 . . . sn of an element x ∈ W of the Weyl group into a
product of simple reflections, we obtain an endofunctor

Πx = Πs1 ◦ · · · ◦ Πsn : MTDerB(SLn/B)→ MTDerB(SLn/B).

Let pt be the stratum B/B ⊆ SLn/B, and consider the “skyscraper” motive

P = pt!Fp.

The object ΠxP has a unique indecomposable direct summand Px with support on the
Bruhat cell of SLn/B corresponding to x, and for any other element y ∈ W , we have:

dim j∗yPx = [∇(ν) : L(µ)].

where ξ : T × V → V is the character inducing the bijection between elements of the
Weyl group and simple objects of O, and µ = ξ ·p x, ν = ξ ·p y are the characters
corresponding to x, y ∈ W . See Remark 24 for the notion of dimension.

In other words, the category of motives MTDerB(SLn/B) contains information
about the modular representation theory of Symn.
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