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1. Introduction
Cichoń’s diagram (Figure 1) illustrates the relationship between the classical cardinal
characteristics of the continuum associated with Baire category, Lebesgue measure and
compactness of subsets of the irrationals. To describe it in full, we first introduce some
notation.

Given I ⊆ P(R), denote

add(I) = min{|A| : A ⊆ I,
⋃
A /∈ I};

cov(I) = min{|C| : C ⊆ I,
⋃
C = R};

non(I) = min{|F | : F ⊆ R, F /∈ I};

cof(I) = min{|C| : C ⊆ I, (∀X ∈ I)(∃Y ∈ C)X ⊆ Y }.

Let N be the family of Lebesgue measure zero subsets of R, M the family of meager
subsets of R, and let K be the family of subsets of R whose intersection with the
irrationals is contained in some σ-compact subset of the irrationals. It is known that
add(K) = non(K) and cov(K) = cof(K), so they are denoted by b and d respectively
(the standard definition of b and d is presented in Example 2.2(4)). Denote c := 2ℵ0 =
|R|, and recall that ℵ1 is the smallest uncountable cardinal. These cardinals describe
the entries in Cichoń’s diagram (Figure 1).

cov(N ) // non(M) // cof(M) // cof(N ) // c

b //

OO

d

OO

ℵ1
// add(N ) //

OO

add(M) //

OO

cov(M) //

OO

non(N )

OO

Figure 1: Cichoń’s diagram. An arrow indicates that ZFC proves ≤ between both cardinals.
In addition, add(M) = min{b, cov(M)} and cof(M) = max{d,non(M)}.

Since the decade of 1980’s Cichoń’s diagram has been a relevant object of research
in set theory of the reals, in particular linked with forcing theory. It has been proved
that this diagram is complete, in the sense that no other inequalities (consistent with
the diagram) can be proved in ZFC. See [1] for a complete survey about this diagram
and its completeness.

One of the main questions is whether it is consistent that all entries in Cichoń’s
diagram (with the exception of the dependant values add(M) and cof(M)) are pairwise
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different. One of the first results in this direction is due to Brendle [3], who showed
examples of forcing extensions with finite support iterations where, with the exception
of ℵ1, all the entries can assume two arbitrary (regular) values. His techniques triggered
relevant advances in this direction, like models with matrix (finite support) iterations
where the diagram is separated into 6 different values [13], and afterwards into 7
different values [5, 14]. Also in the context of finite support iterations, there is a model
where all cardinals of the left side of the diagram are pairwise different [7] (6 values),
which was recently improved in [4] by separating one additional value on the right side
(another model of 7 values).

In the previous examples, the right side of the diagram is separated into at most
three different values. On the other hand, with large products of creature forcing,
it is possible to separate the right side into 5 values [6]. However, forcing posets
constructed in this way are ωω-bounding, hence they force d = ℵ1. This is a limitation
of this method to separate the left side of the diagram at the same time.

Very recently, assuming the existence of four strongly compact cardinals, it was
proved one example where Cichoń’s diagram assumes 10 different values [10], which is
the maximum number of possible different values. To do this, the forcing construction
in [7] to separate the left side was improved, and then the method of Boolean ultra-
powers [12, 10] was used to separate the right side in addition. The same method of
Boolean ultrapowers applied to the forcing in [4] allowed to reduce the large cardinal
hypothesis to three strongly compact cardinals. Another example of 10 values, also
using four strongly compact cardinals and Boolean ultrapowers, was presented in [11]
(see also [15] for further remarks).

Just in this year, M. Goldstern, J. Kellner, S. Shelah and the author [9] proved
that a model of Cichoń’s diagram with 10 different values (as in [10]) can be obtained
without any use of large cardinals. This method also starts with a ccc forcing P−
separating the left side, but the Boolean ultrapower method is replaced by intersecting
the forcing with σ-closed elementary submodels ofHχ (for some large enough regular χ).
Depending on the structure of such submodels, the shape of some “strong witnesses”
of the cardinal characteristics added by P− can be modified so that the right side is
forced to be separated by the forcing resulting after the intersection of P− with the
submodels. The same method also allows to force the same example from [11] without
using large cardinals. Even more, this method can be combined with techniques from [8]
to separate other cardinal characteristics of the continuum in addition to those in
Cichoń’s diagram, concretely, ℵ1 < m < p < h < add(N ) can be forced in addition.

In the following sections, we reproduce the proof of the main result of [9], stated in
Theorem 4.2. There are slight variations in this presentation, mostly associated with
the author’s style and perspective.

2. Relational systems
Many cardinal characteristics can be described in the following general context, see
e.g. [2]

Definition 2.1. Say that R = 〈X, Y,@〉 is a relational system if @ is a relation
contained in X × Y .

(1) A set F ⊆ X is R-bounded if (∃y ∈ Y )(∀x ∈ F )x @ y. Otherwise, it is R-
unbounded.

(2) A set D ⊆ Y is R-dominating if (∀x ∈ X)(∃y ∈ D)x @ y.



These notions allow to define the following cardinal characteristics:

b(R) := min{|F | : F ⊆ X is R-unbounded},

d(R) := min{|D| : D ⊆ Y is R-dominating}.

Denote R⊥ := 〈Y,X, 6A〉 the dual of R.

It is clear that any F ⊆ X is R-unbounded iff it is R⊥-dominating, and D ⊆ Y is
R-dominating iff it is R⊥-unbounded.

Inequalities between cardinal invariants are often proved using the Tukey order
between relational systems. If R = 〈X, Y,@〉 and R′ = 〈X ′, Y ′,@′〉 are relational
systems, R �T R′ means that there are two maps ϕ : X → X ′ and ψ : Y ′ → Y such
that, for any x ∈ X and y′ ∈ Y ′, ϕ(x) @′ y′ implies x @ ψ(y′). In this case, the ψ-image
of any R′-dominating set is R-dominating, and the ϕ-image of any R-unbounded set
is R′-unbounded, thus b(R′) ≤ b(R) and d(R) ≤ d(R′). Say that R and R′ are Tukey
equivalent, denoted by R ∼=T R′, if R �T R′ and R′ �T R.

In the following example we show how the entries in Cichoń’s diagram can be defined
through very simple relational systems (compare with Definition 3.1).

Example 2.2. We fix some notation. For any fuction b : ω → V r {∅} and h ∈ ωω,
denote

∏
b :=

∏
i<ω b(i) and S(b, h) :=

∏
i<ω[b(i)]≤h(i). For two functions x, y with

domain ω, x ∈∗ y denotes (∃n ∈ ω)(∀i ≥ n)x(i) ∈ y(i). Denote by idω the identity
function on ω.

(1) Denote Id := 〈2ω, 2ω,=〉. Note that b(Id) = 2 and d(Id) = c.

(2) For H ⊆ ωω denote Lc(ω,H) := 〈ωω,
(
[ω]<ω

)ω
,∈∗H〉 where x ∈∗H ϕ iff x ∈∗ ϕ and

(∃h ∈ H)ϕ ∈ S(ω, h) (here, ω denotes the constant function with value ω). If H is
countable and contains a function that goes to infinity, then b(Lc(ω,H)) = add(N )
and d(Lc(ω,H)) = cof(N ) (see [1, Thm. 2.3.9]). For the rest of this paper, fix
H∗ := {idn+1

ω : n < ω} and Lc := Lc(ω,H∗).

(3) Define Ωn := {a ∈ [2<ω]<ℵ0 : Lb(
⋃
s∈a[s]) ≤ 2−n} (endowed with the discrete

topology), where Lb denotes the Lebesgue measure in the Cantor space 2ω. Set
Ω :=

∏
n<ω Ωn with the product topology, which is a perfect Polish space. For

every x ∈ Ω denote N∗x :=
⋂
n<ω

⋃
s∈x(n)[s], which is clearly a Borel null set in 2ω.

Define Cn := 〈Ω, 2ω,@〉 where x @ z iff z /∈ N∗x . Recall that any null set in 2ω is a
subset of N∗x for some x ∈ Ω, so Cn ∼=T 〈N (2ω), 2ω, 63〉. Hence, b(Cn) = cov(N )
and d(Cn) = non(N ).

(4) For x, y ∈ ωω denote x ≤∗ y iff (∃n ∈ ω)(∀i ≥ n)x(i) ≤ y(i). The relational system
D = 〈ωω, ωω,≤∗〉 describes the unbounding number b = b(D) and the dominating
number d = d(D).

(5) Denote Ξ := {f : 2<ω → 2<ω : ∀s ∈ 2<ω(s ⊆ f(s))} and set Mg := 〈2ω,Ξ,∈•〉
where x ∈• f iff |{s ∈ 2<ω : x ⊇ f(s)}| < ℵ0. Since Mg ∼=T 〈2ω,M,∈〉, b(Mg) =
non(M) and d(Mg) = cov(M).

Below, we define very special types of dominating (and unbounded) families for
relational systems. These play an important role when forcing values to cardinal char-
acteristics.



Definition 2.3. Fix a relational system R = 〈X, Y,@〉 and a cardinal θ.

(1) For a set M say that y ∈ Y is R-dominating over M if x @ y for all x ∈ X ∩M .

(2) Say that x ∈ X is R-unbounded over M if it is R⊥-dominating over M , that is,
x 6@ y for all y ∈ Y ∩M .

(3) A family D ⊆ Y is θ-R-dominating if, for every E ∈ [X]<θ, there is some R-
dominating y ∈ D over E.

(4) A family F ⊆ X is θ-R-unbounded if it is θ-R⊥-dominating, that is, for any
H ∈ [Y ]<θ there is some R-unbounded x ∈ F over H.

(5) A family D ⊆ Y is strongly θ-R-dominating if |D| ≥ θ and, for every x ∈ X,
|{y ∈ D : x 6@ y}| < θ.

(6) A family F ⊆ X is strongly θ-R-unbounded if it is strongly-θ-R⊥-dominating, that
is, |F | ≥ θ and, for every y ∈ Y , |{x ∈ F : x @ y}| < θ.

Remark 2.4. Fix a relational system R = 〈X, Y,@〉.

(1) The cardinal invariants b(R) and d(R) may not always exist. Concretely, b(R)
does not exist iff d(R) = 1. Dually, d(R) does not exists iff b(R) = 1.

(2) Any subset of Y is R-dominating iff it is 2-R-dominating. Likewise, R-unbounded
is equivalent to 2-R-unbounded.

(3) If θ ≤ θ′ are cardinals, then any θ′-R-dominating family is θ-R-dominating. Like-
wise for unbounded families.

(4) If θ ≥ 2, then any θ-R-dominating family is R-dominating.1 Likewise for un-
bounded.

(5) Any strongly θ-R-dominating family is R-dominating. Likewise for unbounded.

The following result shows the effect of these special types of dominating (and
unbounded) families on cardinal characteristics.

Lemma 2.5. Let R = 〈X, Y,@〉 be a relational system and θ ≥ 2 a cardinal.

(a) If D ⊆ Y is a θ-R-dominating family then d(R) ≤ |D| and θ ≤ b(R)

(b) If F ⊆ X is θ-R-unbounded then b(R) ≤ |F | and θ ≤ d(R).

(c) If θ is regular and D ⊆ Y is a strongly θ-R-dominating family, then D is |D|-R-
dominating, in particular, d(R) ≤ |D| ≤ b(R).

(d) If θ is regular and F ⊆ X is strongly θ-R-unbounded then it is |F |-R-unbounded
and b(R) ≤ |F | ≤ d(R).

We finish this section with the following special type of dominating family. This is
extracted from the property COB (see Definition 3.2(2)), originally defined in [12, 10].

1Any subset of Y is 0-R-dominating; and D ⊆ Y is 1-R-dominating iff D 6= ∅.



Definition 2.6. Let R = 〈X, Y,@〉 be a relational system and let 〈S,≤〉 be a directed
partial order. Say that D ⊆ Y is strongly S-R-dominating if D = {yi : i ∈ S} and, for
any x ∈ X, there is some ix ∈ S such that x @ yi for any i ≥ ix in S.

Remark 2.7. Let S = 〈S,≤〉 be a directed partial order. Denote cp(S) = b(S) and
cf(S) = d(S), when S is understood as the relational system 〈S, S,≤〉. Fix a relational
system R = 〈X, Y,@〉.

(1) The existence of a strongly S-R-dominating family is equivalent to R �T S. Thus,
if such a family exists then cp(S) ≤ b(R) and d(R) ≤ cf(S).

(2) If S ′ is a cofinal subset of S, then any strongly S-R-dominating family contains a
strongly S ′-R-dominating family.

(3) Any strongly S-R-dominating family is cp(S)-R-dominating of size ≤ |S|.

(4) Let θ be a cardinal and L a well ordered set with order type θ. If D ⊆ Y has size
θ, then D is strongly θ-R-dominating (in the sense of Definition 2.3(5)) iff it is
strongly L-R-dominating (in the sense of Definition 2.6).

3. Forcing and elementary submodels
In this section we present the necessary tools to prove the main theorem. From now
on, we only deal with the following special type of relational systems.

Definition 3.1. We say that a relational system R = 〈X, Y,@〉 is real-definable if both
X and Y are Polish spaces and @ is Borel in X × Y .2

Note that the relational systems in Example 2.2 (in (2) only when H is countable)
are real-definable.

Throughout this section, fix a real-definable relational system R = 〈X, Y,@〉. From
now on, when dealing with R inside some model N we look at its interpretation
RN := 〈XN , Y N ,@N〉 in the model, but the upper index N is usually omitted due
to absoluteness.

The following properties are originally defined in [12, 10, 9].

Definition 3.2. Fix a poset P

(1) For a set S and a cardinal number κ, the property DOMR(P, κ, S) states that there
is a sequence 〈ẏi : i ∈ S〉 of P-names of members of Y such that, whenever γ < κ
and 〈ẋξ : ξ < γ〉 is a sequence of P-names of members of X, there is some i ∈ S
such that  ẋξ @ ẏi for all ξ < γ.

(2) For a directed set S, the property COBR(P, S) states that there is a sequence
〈ẏi : i ∈ S〉 of P-names of members of Y such that, whenever ẋ is a P-name of a
member of X, there is some i∗ ∈ S such that  ẋ @ ẏi for all i ≥ i∗ in S.

(3) For a linear order L, the property LCUR(P, L) states that there is a sequence
〈ẋi : i ∈ L〉 of P-names of members of X such that, whenever ẏ is a P-name of a
member of Y , there is some i∗ ∈ L such that  ẋi 6@ ẏ for any i ≥ i∗ in L.

Remark 3.3. It is clear that

2 In general, we only need that @ is sufficiently absolute in the sense that the statement “x @ y” is
absolute between the models we are dealing with.



(1) LCUR(P, L) is equivalent to COBR⊥(P, L).

(2) COBR(P, S) implies DOMR(P, cp(S), S).

Remark 3.4. Let S be a directed partial order. If S ′ is a cofinal subset of S then
COBR(P, S) is equivalent to COBR(P, S ′). Hence, by Remark 3.3(1), if L is a linear
order and L′ is a cofinal subset of L, LCUR(P, L) is equivalent to LCUR(P, L′).
Remark 3.5. In the notation of Definition 3.2,

(a) DOMR(P, κ, S) implies that P forces that {ẏi : i ∈ S} is a κ-R-dominating family,
in particular, κ ≤ b(R) and d(R) ≤ |S|.

(b) COBR(P, S) implies that P forces that R �T S (i.e., {ẏi : i ∈ S} is a strongly
S-R-dominating family), in particular, cp(S) ≤ b(R) and d(R) ≤ cf(S).

(c) LCUR(P, L) implies that P forces that R⊥ �T L, in particular, b(R) ≤ cf(L) ≤
d(R).

However, the converse of these statements only hold in very specific situations.

(1) If S is a set in the ground model and P forces that there is some κ-R-dominating
family {yi : i ∈ S}, then DOMR(P, κ, S̈) where S̈ denotes the set of nice P-names
of members of S. In the case that P has ccc, |S̈| ≤ (|P| · |S|)ℵ0 , so DOMR(P, S)
holds when ℵ0 ≤ |P| ≤ |S| = |S|ℵ0 .

(2) The converse of (b) is true whenever P has cp(S)-cc, in particular when P has ccc
and cp(S) is uncountable.

(3) By (2) and Remark 3.3(1), the converse of (c) is true when P has cf(L)-cc, in
particular when P has ccc and cf(L) is uncountable.

In our applications the converses of (b) and (c) hold because we only consider ccc
posets and directed partial orders S with cp(S) uncountable.

The following lemmas are the main tools to prove the main theorem.

Lemma 3.6. Let κ be an uncountable regular cardinal, S a directed partial order, P a
κ-cc poset, and let N � Hχ (with χ regular large enough) be <κ-closed with P, κ, S ∈ N .
Then:

(a) P ∩N is a κ-cc complete subposet of P.

(b) cp(S ∩N) ≥ min{κ, cp(S)}.

(c) If cf(S) ⊆ N then S ∩ N is cofinal in S, in particular cp(S ∩ N) = cp(S) and
cf(S ∩N) = cf(S).

Proof. Since P∩N is a subposet of P that preserves incompatible conditions, it is clear
that P∩N is also κ-cc. Now, if A is a maximal antichain in P∩N , then A ∈ N because
|A| < κ and N is <κ-closed. Hence N |=“A is a maximal antichain in P”, so the same
holds in the universe. Therefore, P ∩N l P. This shows (a).

To see (b), if F ⊆ S ∩ N has size <min{κ, cp(S)}, then F ∈ N , so N |=“(∃b ∈
S)(∀a ∈ F ) a ≤ b”, hence there is some b ∈ S ∩N that bounds F ∩N = F from above.

For (c), since cf(S) ∈ N , we can find some S ′ ∈ N cofinal in S of size cf(S). But
also cf(S) ⊆ N , so S ′ ⊆ N . Hence S ∩N ⊇ S ′, so S ∩N is cofinal in S.



Lemma 3.7. With the same hypothesis as in the previous lemma, if in addition the
parameters defining R are in N , ν ∈ N is a cardinal and D ∈ N , then:

(a) DOMR(P, ν,D) implies DOMR(P ∩N,min{κ, ν}, D ∩N).

(b) COBR(P, S) implies COBR(P ∩N,S ∩N).

(c) If |D| ⊆ N then DOMR(P, ν,D) implies DOMR(P ∩N, ν,D).

(d) If cf(S) ⊆ N then COBR(P, S) implies COBR(P ∩N,S).

Proof. Assume DOMR(P, ν,D). Since this property also holds in N , we can find 〈ẏi :
i ∈ D〉 ∈ N witnessing DOM. To show (a), we prove that 〈ẏi : i ∈ D ∩ N〉 witnesses
DOMR(P ∩ N,min{κ, ν}, D ∩ N). Since any member of a Polish space can be coded
by a real, and nice names of reals are coded by countably many maximal antichains, if
wlog we assume that each ẏi is a nice P-name, then the maximal antichains coding it
are in N because N is <κ-closed, so ẏi ∈ N and it is in fact a P ∩N -name.

Let γ < min{κ, ν} and x̄ := 〈ẋα : α < γ〉 be a sequence of nice P ∩ N -names of
members of X. Then, they are also P-names and, since N is <κ-closed, x̄ ∈ N . Hence
N |=“(∃i ∈ D)(∀α < γ) P ẋα @ ẏi”, so there is some i ∈ D ∩N such that P ẋα @ ẏi
for any α < γ. Since P ∩ N is a complete subposet of P, we are done. A similar
argument shows (b).

To see (c), note that D ∈ N and |D| ⊆ N implies D ⊆ N , hence any witness of
DOMR(P, ν,D) (formed by nice P-names), is a witness of DOMR(P∩N, ν,D). Property
(d) can be verified likewise.

Lemma 3.8. Let κ ≤ λ ≤ θ be cardinals with κ and λ uncountable regular, S a directed
set and P a κ-cc poset. Assume that 〈Nξ : ξ < λ〉 is an increasing sequence of <κ-closed
elementary submodels of Hχ of size θ, containing θ ∪ {θ,P, S} and the parameters of
R, such that Nξ ∈ Nξ+1 for any ξ < λ. Set N :=

⋃
ξ<λNξ (which is also a <κ-closed

elementary submodel of Hχ). Then:

(a) If cp(S) > θ then cf(S ∩N) = λ.

(b) If µ ∈ N is regular then cf(µ ∩N) = µ whenever µ ≤ θ, otherwise cf(µ ∩N) = λ.

(c) If ν ∈ N is a cardinal, ν > θ and D ∈ N , then DOMR(P, ν,D) implies COBR(P∩
N, λ).

(d) If cp(S) > θ then COBR(P, S) implies COBR(P ∩N, λ).

Proof. We show (a). For each ξ < λ, |S ∩ Nξ| ≤ θ < cp(S), so there is some iξ ∈ S
that bounds S ∩ Nξ from above. In fact, we can find such iξ ∈ S ∩ Nξ+1 because
Nξ, S ∈ Nξ+1. Hence 〈iξ : ξ < λ〉 is a cofinal increasing sequence in S ∩ N , so
cf(S ∩N) = cp(S ∩N) = λ.

For (b), when µ ≤ θ we have µ ⊆ N , so cf(µ∩N) = cf(µ) = µ; otherwise, applying
(a) to S := µ we get cf(µ ∩N) = λ.

For (c), let Ẍ be the set of nice P-names of members of X. For each ξ < λ,
|Ẍ∩Nξ| ≤ θ < ν, so DOMR(P, ν,D), witnessed by 〈ẏi : i ∈ D〉 (assuming that they are
nice names) implies that there is some iξ ∈ D such that P ẋ @ ẏiξ for any ẋ ∈ Ẍ ∩Nξ,
in fact, we can find iξ ∈ Nξ+1. Hence, 〈ẏiξ : ξ < λ〉 witnesses COBR(P ∩N, λ).

Property (d) follows from (c) because COBR(P, S) implies DOMR(P, cp(S), S) by
Remark 3.3(2).



4. Proof of the main theorem
We denote the relational systems introduced in Example 2.2 by R1 := Lc, R2 := Cn,
R3 := D and R4 := Mg. For i = 1, 2, 3, 4, COBi abbreviates COBRi

, likewise for
DOMi and LCUi.

The starting point to prove the main theorem is to find a ccc poset forcing, through
the properties LCU and COB (even DOM is just fine), that the cardinals on the left
side of Cichoń’s diagram are pairwise different. This was done in [7, 10, 4]. For the
author’s convenience (and also to deal with a short hypothesis), we use the construction
in [4].

Theorem 4.1 ([4, Thm. 5.3]). Let 〈νj : j = 1, . . . , 6〉 be a monotone increasing sequence
of uncountable cardinals such that νj is regular for j = 1, . . . , 5 and ν<ν36 = ν6. Then
there is a ccc poset P− of size ν6 such that:

(1) LCUi(P−, κ) holds for any regular θi ≤ κ ≤ θ6 and i = 1, 2, 3; for i = 4,
LCU4(P−, ν4) and LCU4(P−, ν5) hold.

(2) For each i = 1, 2, 3 there is a directed order Si with cp(Si) = νi and cf(Si) =
|Si| = ν6 such that COBi(P−, Si) holds; for i = 4, there is a directed order S4 with
cp(S4) = ν4 and cf(S4) = |S4| = ν5 such that COB4(P−, S4) holds.

In particular, P− forces add(N ) = ν1 ≤ cov(N ) = ν2 ≤ b = ν3 ≤ non(M) = ν4 ≤
cov(M) = ν5 ≤ d = non(N ) = c = ν6.

Now we are ready to prove the main theorem. Note that it would be enough to
assume GCH, but for our convenience the result is presented with weaker hypothesis
(which could be even weaker, see [9, Rem. 3.3]).

Theorem 4.2 ([9, Thm. 3.1]). Let 〈µj : j = 1, . . . , 9〉 be a monotone increasing se-
quence of uncountable cardinals such that µj is regular for 1 ≤ j ≤ 8 and µℵ09 = µ9. In
addition, assume that there are at least 9 cardinals θ > µ9 such that θ<θ = θ. Then
there is a ccc poset that forces add(N ) = µ1 ≤ cov(N ) = µ2 ≤ b = µ3 ≤ non(M) =
µ4 ≤ cov(M) = µ5 ≤ d = µ6 ≤ non(N ) = µ7 ≤ cof(N ) = µ8 ≤ c = µ9.

Proof. Fix a sequence of cardinals

ℵ1 ≤ λ7 ≤ λ5 ≤ λ3 ≤ λ1 ≤ λ0 ≤ λ2 ≤ λ4 ≤ λ6 ≤ λ∞

< θ7 < θ6 < θ5 < θ4 < θ3 < θ2 < θ1 < θ0 < θ∞

such that

(1) λ8−2i+1 := µi and λ8−2i := µ9−i for i = 1, 2, 3, 4, and λ∞ := µ9;

(2) θ<θnn = θn for all n =∞, 0, . . . , 7.

Put νi := θ8−2j for each i = 1, 2, 3, 4 and ν5 = ν6 := θ∞, and let P− be the ccc poset
resulting from the application of Theorem 4.1 to these values.

Choose a regular cardinal χ large enough, and for 0 ≤ n ≤ 7 and α < λn, fix Nn,α

and N8 satisfying the following (this can be done by (2) and because λℵ0∞ = λ∞):

(i) Nn,α and N8 are elementary submodels of Hχ containing (as elements) P−, the
sequences of θ’s and λ’s, as well as the directed orders Si obtained from Theo-
rem 4.1.



(ii) 〈Nm,β : m < n, β < λm〉, 〈Nn,β : β < α〉 ∈ Nn,α and 〈Nm,β : m ≤ 7, β < λm〉 ∈
N8.

(iii) Nn,α is <θn-closed of size θn, and θn ⊆ Nn,α.

(iv) N8 is <ℵ1-closed of size λ∞, and λ∞ ⊆ N8.

Set Nn :=
⋃
α<λn

Nn,α, which is a <λn-closed elementary submodel of Hχ of size θn.
For 0 ≤ m ≤ 8, define N∗m :=

⋂m
n=0Nm and Pm := P ∩ N∗m. Note that N∗m � Hχ,3

moreover, N∗m is <ℵ1-closed, so Pn l Pm l P− for m < n by Lemma 3.6(a).
We show that P8 is the required poset, in fact, we show that LCUi(P8, λ8−2i),

LCUi(P8, λ8−2i+1) and COBi(P8, Si ∩ N∗8 ) hold for any i = 1, 2, 3, 4, with λ8−2i+1 ≤
cp(Si ∩N∗8 ) and cf(Si ∩N∗8 ) ≤ λ8−2i (so the result follows by Remark 3.5(b),(c)).

Fix 1 ≤ i ≤ 4. By Theorem 4.1, LCUi(P−, θ∞) and LCUi(P−, θj) hold for j ≤ 8−2i.
By induction on m ≤ 8, we show that LCUi(Pm, λj) holds for j ≤ min{m, 8− 2i+ 1},
and LCUi(Pm, θj) holds for min{m, 8− 2i+ 1} ≤ j ≤ 8− 2i (this second statement is
vacuous when m ≥ 8− 2i+ 1). The case m = 8 gives us the desired result about LCU.

Case m = 0. Note that N∗0 is <λ0-closed of size θ0. Since θ0 ∪ {θ0} ⊆ N∗0 (by (i)
and (iii)), LCUi(P0, θj) holds for any j ≤ 8− 2i by Lemma 3.7(d) and Remark 3.3(1);
on the other hand, by Lemma 3.8(d), LCUi(P−, θ∞) implies LCUi(P0, λ0).

Successor step. Assume our claim holds for m < 8. Note that N∗m ∈ N∗m+1, so
Pm ∈ N∗m+1. First assume that m ≤ 8 − 2i, so LCUi(Pm, λj) holds for j ≤ m and
LCUi(Pm, θj) holds for m ≤ j ≤ 8− 2i. Since λj < θm+1 for j ≤ m, and θj′ ≤ θm+1 for
m + 1 ≤ j′ ≤ 8 − 2i, LCUi(Pm+1, λj) and LCUi(Pm+1, θj′) hold by Lemma 3.7(d); on
the other hand, LCUi(Pm, θm) implies LCUi(Pm+1, λm+1) by Lemma 3.8(d).

Now assume that m ≥ 8− 2i + 1, so LCUi(Pm, λj) holds for j ≤ 8− 2i + 1. Since
for all such j, λj ≤ θm+1 when m < 7, and λj ≤ λ∞ in case m = 7, by Lemma 3.7(d)
we have LCUi(Pm+1, λj).

Regarding COB, fix 1 ≤ i ≤ 4 and put m := 8−2i. Recall that COBi(P−, Si) holds
by Theorem 4.1. We first show that cp(Si ∩ N∗m+1) ≥ λm+1 and cf(Si ∩ N∗m+1) ≤ λm.
Using Lemma 3.6(b) it is easy to show by induction on n ≤ m+1 that cp(Si∩N∗n) ≥ λn.
Concerning the cofinality, fix Λ :=

∏m
n=0 λn and, for each η ∈ Λ, set Nη :=

⋂m
n=0Nn,η(n).

Note that N∗m =
⋃
η∈ΛN

η, and that Λ is element and subset of any of the considered
submodels of Hχ.

For each η ∈ Λ, since Nη is <θm-closed and cp(Si) ≥ θm, we get cp(Si∩Nη) ≥ θm >
θm+1. Hence, by Lemma 3.8(a), cf(Si∩Nη∩Nm+1) = λm+1. Choose Cη ⊆ Si∩Nη∩Nm+1

cofinal of size λm+1, so C :=
⋃
η∈ΛCη is cofinal in Si ∩N∗m+1 =

⋃
η∈Λ Si ∩Nη ∩Nm+1.

Therefore, cf(Si ∩N∗m+1) ≤ |C| ≤ λm.
Now, by induction on n with m+ 1 ≤ n ≤ 8, we show that cp(Si∩N∗n) ≥ λm+1 and

cf(Si∩N∗n) ≤ λm. The case n = m+1 was already taken care of. For the inductive step,
since cf(Si∩N∗n) ≤ λm we have that Si∩N∗n+1 is cofinal in Si∩N∗n by Lemma 3.6(c), in
particular cp(Si ∩N∗n+1) = cp(Si ∩N∗n) ≥ λm+1 and cf(Si ∩N∗n+1) = cf(Si ∩N∗n) ≤ λm.
When n = 8 we obtain COBi(P8, Si ∩N∗8 ) by Lemma 3.7(b).

To finish, we show that P8 forces c = λ∞. It is clear that |P8| ≤ λ∞, so P8 forces
c ≤ |P8|ℵ0 ≤ λ∞. For the converse inequality, since P− forces c = θ∞ it is clear that
LCUId(P−, κ) holds for any infinite κ ≤ θ∞, in particular, for any regular κ ≤ λ∞. By
Lemma 3.7(d), LCUId(P8, κ) holds for any regular κ ≤ λ∞, so P8 forces c ≥ λ∞.

3 If M,N � Hχ and M ∈ N then M ∩N �M and M ∩N � N .



Remark 4.3. The construction of the forcing of Theorem 4.1 is slightly simpler when,
instead of (2), it is demanded:

(2−) For each i = 1, 2, 3, DOMi(P−, νi, ν6) holds; for i = 4, COB4(P−, ν4, ν5) holds.

The proof of Theorem 4.2 can be carried out in this simpler context.
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[1] Tomek Bartoszyński and Haim Judah, Set theory, A K Peters, Ltd., Wellesley, MA, 1995,
On the structure of the real line.

[2] Andreas Blass, Combinatorial cardinal characteristics of the continuum, In: Handbook
of set theory. Vols. 1, 2, 3, pages 395–489, Springer, Dordrecht, 2010.
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