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Hyperbolic solutions to Bernoulli’s free boundary problem

小野寺 有紹 (東京工業大学)∗

1. The Bernoulli problem
Let Ω be a bounded domain in R2 and Q > 0 a constant. The Bernoulli problem is
the problem of finding an open subset A ⊂ Ω for which the following overdetermined
problem is solvable: 

−∆u = 0 in Ω \ A,
u = 0 on ∂Ω,

u = 1 on ∂A,

∂u

∂ν
= Q on ∂A,

(1.1)

where ν is the unit outer normal vector with respect to the annular domain Ω \ A.
The first three equations comprise the classical Dirichlet problem, and it has a unique
solution u. Thus (1.1) has an extra boundary condition, which makes a restriction on
A for the solvability of (1.1).

Equations (1.1) arises in a shape optimization problem in which one wants to design
the shape of the insulation layer of an electronic cable such that the current leakage
is minimized subject to a given amount of insulation material. Then, u stands for the
electrostatic potential and Ω is the cross-section of the cable with the insulation layer
Ω \ A. Another physical interpretation of u is the stream potential of the stationary
irrotational velocity field in the plane of an incompressible inviscid fluid which circulates
around a bubble A of air in a given container Ω.

The existence of a solution A for prescribed Ω and Q is shown by various methods
including the super and subsolution method of Beurling [3], a variational method by Alt
and Caffarelli [2], and the inverse function theorem of Nash and Moser by Hamilton [6].
However, most of the results are concerned with a class of “stable”, or “well-ordered”,
solutions called elliptic solutions (see Definition 2), where a solution A to the Bernoulli
problem is called elliptic if, roughly speaking, the infinitesimal increase of the value
of Q > 0 makes the corresponding solution A to expand. Indeed, the super and
subsolution method only allows one to construct elliptic solutions, since the method
constructs a solution A as the union of all subsolutions, where Asub ⊂ Ω is called
a subsolution to (1.1) if there exists a solution u to (1.1) in Ω \ Asub with the last
boundary condition replaced by ∂νu ≤ Q; and hence for Q̃ > Q the corresponding
solution Ã must be larger than A. Variational solutions constructed as minimizers are
also elliptic. This can be seen by looking at the form of the variational functional
(see [5, Section 5.3]). On the other hand, the inverse function theorem is, in principle,
able to handle “unstable” solutions called hyperbolic solutions, for which the increase
of Q > 0 makes A to shrink; but (1.1) has a regularity issue called “loss of derivatives”,
and this requires several estimates which are only (at least up to now) available for
elliptic solutions.

The structure of solutions A to the Bernoulli problem is illustrated by the simplest
situation where Ω is the unit ball B = B1, Here, we denote by Br the ball of radius
r > 0 with center at the origin.
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Example . For Ω = B, it is known that solutions A must be concentric balls. The
function ur satisfying the first three equations in (1.1) for A = Br (0 < r < 1) and its
normal derivative at |x| = r are

ur(x) =
log |x|
log r

,
∂ur

∂ν
(r) = − 1

r log r
.

The function Q(r) := ∂νur(r) (0 < r < 1) is convex and takes its minimum at r =
1/e. Therefore, for Q = Q0 := Q(1/e), the Bernoulli problem has a unique solution
A = B1/e; while there are an elliptic solution Bre(Q) and a hyperbolic solution Brh(Q)

with re(Q) > 1/e > rh(Q) for Q > Q0; and no solution for Q < Q0. Moreover, these
solutions satisfy

lim
Q→∞

re(Q) = 1, lim
Q→∞

rh(Q) = 0.

Thus, the elliptic solutions Bre(Q) asymptotically approach to the prescribed domain
Ω = B, and the hyperbolic solutions Brh(Q) shrink to the single point {0}.

One of the interesting questions is whether such a foliation structure of solutions
can be observed for general convex domain Ω. As a matter of fact, Acker [1] proved
that this is true for elliptic solutions. Our research was initiated towards the affirmative
answer to the following conjecture.

Conjecture (Flucher and Rumpf [5]). There exist hyperbolic foliated solutions shrink-
ing to the conformal center z0 ∈ Ω for any convex domain Ω.

The conformal centers of a simply-connected domain Ω are the points z0 ∈ Ω at
which the conformal radius

R(z) := |f ′
z(0)| (z ∈ Ω)

takes its maximum, where fz : B → Ω is the biholomorphic map satisfying f(0) = z
and f ′(0) > 0. It is known that the conformal radius R(z) is strictly concave if Ω is
convex; and thus the conformal center is unique (see Cardaliaguet and Tahraoui [4]).

This conjecture has been open for decades. This is due to the fact that many argu-
ments based on the maximum principles or the variational method fail for hyperbolic
solutions. The inverse function theorem can possibly apply to capture hyperbolic so-
lutions; however, the problem of “loss of derivatives” forced one to work with not only
a Banach space, but also a graded family of spaces (see [6]), and solutions in general
have lower regularity than the initial solution does. Thus, these existing methods are
not suitable to pursue the behavior of hyperbolic solutions A when the value Q > 0
changes.

The main contribution of this work is to introduce a new “parabolic” approach,
namely that we derive and analyze a flow equation describing the behavior of solutions
A = A(t) for varying data Q = Q(t). As a result, we are able to construct locally
foliated hyperbolic solutions. This approach has a common feature with the inverse
function theorem in [6], since the derivation of the flow equation is essentially based
on the linearization of (1.1). But the parabolic approach has the advantage that “loss
of derivatives” can be handled with the established theory of evolution equations; and
hence a graded family of spaces is no longer needed and we can work with a fixed
Banach space. Moreover, our method can apply in any space dimensions n ≥ 2, and
thus hereafter we consider (1.1) in Rn.



2. Deformation flow
To explain how our approach can handle the regularity problem, let us consider the
abstract functional equation

F (x, s) = 0 (x ∈ X, s ∈ R), (2.1)

where X is a Banach space and F is a C1-mapping from X × R to another Banach
space Y with X ⊂ Y . If F (0, 0) = 0 and the Fréchet derivative ∂xF (0, 0) ∈ L(X,Y )
(the space of bounded operators from X to Y ) is invertible, then for each given small
data s we can find a unique solution x(s) ∈ X in a neighborhood of 0 by the implicit
function theorem. In fact, the sequence of X-valued curves

x1(s) := 0, xj+1(s) := xj(s)− ∂xF (0, 0)−1F (xj(s), s) (−ε ≤ s ≤ ε) (2.2)

converges to a C1-curve x(s) satisfying x(0) = 0 and F (x(s), s) = 0. However, the
method would fail if we only have the regularity gain ∂xF (0, 0)−1 ∈ L(Y, Y )†; and thus
xj+1(s) is merely Y -valued even if xj(s) is X-valued. This “loss of derivatives” actually
happens in the Bernoulli problem (1.1), and one is required to use the technique of
Nash and Moser to overcome this regularity issue. We, instead, consider the evolution
equation

x′(s) = −∂xF (x(s), s)−1∂sF (x(s), s), x(0) = 0. (2.3)

This equation is formally derived by differentiating (2.1) in s with x = x(s), and it is
easy to see that F (x(s), s) = 0 if and only if x = x(s) is a solution to (2.3). A natural
regularity condition for this parabolic formulation is

x(s) ∈ C([0, ε), X) ∩ C1([0, ε), Y ),

so that the “loss of derivatives” is no longer an issue and it is well-treated within the
standard theory of evolution equations.

Now we set up the Bernoulli problem (1.1) as a functional equation of the form
F (ρ,Q) = 0. Hereafter, Ω denotes a fixed bounded domain in Rn with h2+α-boundary,
and Q is allowed to be a positive function in h2+α(Rn), where hk+α(Γ) is the so-called
little Hölder space on a domain (or hypersurface) Γ defined as the closure of C∞(Γ)
in the topology of the Hölder space Ck+α(Γ). Let us choose a reference domain A0 ⊂
A0 ⊂ Ω with smooth boundary ∂A0, say of class h4+α, and identify ρ ∈ Uγ ⊂ h3+α(∂A0)
with a perturbed domain Aρ having h3+α-boundary

∂Aρ = {ζ + ρ(ζ)ν(ζ) | ζ ∈ ∂A0} , (2.4)

where ν = ν(ζ) is the unit outer normal vector with respect to Ω \ A0 and

Uγ := {ρ ∈ h3+α(∂A0) | ∥ρ∥h3+α(∂A0) < γ}, γ ≤ a/4,

with 0 < a < dist (∂A0, ∂Ω) taken to be small such that θ(ζ, r) := ζ + rν(ζ) defines a
diffeomorphism from ∂A0 × (−a, a) to its image. Denoting by ζ and r the components
of the inverse map θ−1, i.e., θ−1(x) = (ζ(x), r(x)), we see that

θρ(x) :=

{
θ (ζ(x), r(x) + η(r(x))ρ(ζ(x))) if x ∈ θ(∂A0 × (−a, a)),

x otherwise,

†Of course, this happens only when ∂xF (0, 0) is not invertible. We will give the precise meaning of
the “inverse” ∂xF (0, 0)−1 later.



defines an h2+α-diffeomorphism from Ω \A0 to the annular domain Ω \Aρ, where η is
a smooth cut-off function satisfying

η(r) =

{
1 (|r| ≤ a/4),
0 (|r| ≥ 3a/4)

and

∣∣∣∣dηdr (r)
∣∣∣∣ < 4

a
. (2.5)

The diffeomorphism θρ induces the pull-back and push-forward operators

θ∗ρu := u ◦ θρ, θρ∗v := v ◦ θ−1
ρ

for u ∈ hk+α(Ω \ Aρ) and v ∈ hk+α(Ω \ A0) (0 ≤ k ≤ 2). For a given ρ ∈ Uγ, the first
three equations in (1.1) with A = Aρ comprise the Dirichlet problem and thus always
have a unique solution uρ ∈ h2+α(Ω \ Aρ). Hence if we define

F (ρ,Q) := θ∗ρ

(
∂uρ

∂ν
−Q

)
,

then Aρ is a solution to (1.1) if and only if F (ρ,Q) = 0.

Proposition 1. Suppose that Q ∈ h2+α(Rn) and ρ ∈ Uγ. Then,

(i) F ∈ C1(Uγ × R, h1+α(∂A0)).

(ii) The Fréchet derivative of F with respect to ρ at ρ = 0 is given by

∂ρF (0, Q)[ρ̃] =
∂p

∂ν
−HQρ̃− ∂Q

∂ν
ρ̃

(
ρ̃ ∈ h3+α(∂A0)

)
,

where H = H∂A0 ∈ h1+α(∂A0) is the mean curvature of ∂A0 normalized in such
a way that H = −(n− 1) if A0 = B, and p is the solution to

−∆p = 0 in Ω \ A0,

p = 0 on ∂Ω,

p = −Qρ̃ on ∂A0.

(2.6)

(iii) The linear operator given above is extended to

∂ρF (0, Q) ∈ L
(
h2+α(∂A0), h

1+α(∂A0)
)
.

The extension ∂ρF (0, Q) in Proposition 1 (iii) with Q(x) > 0 has the bounded
inverse ∂ρF (0, Q)−1 ∈ L(h1+α(∂A0), h

2+α(∂A0)) if the elliptic equation
−∆p = 0 in Ω \ A,

p = 0 on ∂Ω,

∂p

∂ν
+

(
H +

∂νQ

Q

)
p = q on ∂A

(2.7)

with A = A0 is uniquely solvable for any q ∈ h1+α(∂A0). Moreover,

∂ρF (0, Q)−1[q] = − p

Q
∈ h2+α(∂A0)

(
q ∈ h1+α(∂A0)

)
,

where p is the unique solution to (2.7). Let us now recall some notions for solutions A
to (1.1) in terms of the linearized problem (2.7).



Definition 1 (Non-degeneracy). We say that a domain A is non-degenerate if the
linearized problem (2.7) with q = 0 has only the trivial solution p = 0.

Remark 1. The non-degeneracy of A, in fact, guarantees the unique solvability of
(2.7) for any inhomogeneous data q by the Fredholm theory.

Furthermore, a classification of solutions A in terms of the behavior of solutions p
to (2.7) was introduced by Flucher and Rumpf [5] as an extension of Beurling’s original
definition [3].

Definition 2 (Elliptic, hyperbolic and parabolic solutions). A solution A to the Bernoulli
problem (1.1) is called elliptic (hyperbolic) if (2.7) has a solution for q = 1 and all the
solutions p satisfy ∫

∂A

p dσ > 0 (< 0).

Otherwise, A is called parabolic. Moreover, an elliptic (hyperbolic) solution A is said
to be monotone if p > 0 (< 0) holds everywhere on ∂A.

Remark 2. Elliptic (hyperbolic) solutions are interpreted as volume-increasing (de-
creasing) solutions A(ε) for varying Q(ε) = Q+ ε, since

d

dε

[∫
A(ε)

dx

]
=

1

Q(ε)

∫
∂A(ε)

p dσ > 0 (< 0).

The monotonicity implies that A(ε) increases (decreases) in the sense of set inclusion,
which actually corresponds to Beurling’s original definiton.

If F (ρ0, Q0) = 0 and Aρ0 is non-degenerate, i.e., ∂ρF (ρ0, Q0) is invertible, one
would proceed to the successive approximation procedure as (2.2) in order to construct
a solution ρ to F (ρ,Q) = 0 for Q ̸= Q0; but it fails because of the loss of derivatives
∂ρF (ρ0, Q0)

−1F (ρ,Q) ∈ h2+α(∂A0) for ρ ∈ h3+α(∂A0) as mentioned earlier. Instead,
we take the alternative parabolic approach, namely, setting Q(x, t) = Q0(x)+tq(x) > 0
and F̃ (ρ, t) = F (ρ,Q(t)), we consider the evolution equation

ρ′(t) = −∂ρF̃ (ρ, t)−1
[
∂tF̃ (ρ, t)

]
(2.8)

with ρ(0) = ρ0 under the regularity condition

ρ ∈ C([0, T ), h3+α(∂A0)) ∩ C1([0, T ), h2+α(∂A0)). (2.9)

In fact, this regularity assumption is suitable not only for treating loss of derivatives
in (2.8), but also for applying the standard theory of evolution equations. Proposition
1 shows that, for A(t) = Aρ(t), (2.8) is represented by flow equation

V = − p

Q
on ∂A(t),

with


−∆p = 0 in Ω \ A(t),

p = 0 on ∂Ω,

∂p

∂ν
+

(
H +

1

Q

∂Q

∂ν

)
p = q on ∂A(t),

(2.10)

where V is the speed of moving surface ∂A(t) in the outer normal direction with respect
to Ω \ A(t) to (1.1) for varying Q(x, t). Summarizing the above argument, we obtain
the following characterization of a family of solutions A(t) to (1.1).



Theorem 1. Let Q(x, t) = Q0(x) + tq(x) > 0 and Q0, q ∈ h2+α(Rn), and suppose that
A(0) = Aρ0 ⊂ Ω with ρ0 ∈ h3+α(∂A0) is a solution to (1.1) for Q0. If (2.9) holds and
A(t) = Aρ(t) are all non-degenerate, then the following are equivalent:

(i) Each A(t) is a solution to the Bernoulli problem (1.1) for Q(x, t);

(ii) {A(t)}0≤t<T is a solution to the flow equation (2.10).

Theorem 1 reduces the construction of solutions A(t) of (1.1) to the solvability of
the flow equation (2.10). The following theorem shows that (2.10) is, in fact, solvable
locally in time.

Theorem 2. Let Ω be a bounded domain with h2+α-boundary and Q(x, t) = Q0(x) +
tq(x) > 0, Q ∈ h3+α(Rn), and q ∈ h2+α(Rn), and suppose that Aρ0 ⊂ Ω with ρ0 ∈
h3+α(∂A0) is a non-degenerate solution to (1.1) for Q0 > 0.

(i) If Aρ0 is elliptic, monotone and q < 0, then there exists T > 0 such that, for
all 0 ≤ t < T , (1.1) possesses a non-degenerate, elliptic and monotone solution
A(t) = Aρ(t) for Q(x, t) satisfying ρ(0) = ρ0 and (2.9).

(ii) If Aρ0 is hyperbolic, monotone and q > 0, then there exists T > 0 such that, for
all 0 ≤ t < T , (1.1) possesses a non-degenerate, hyperbolic and monotone solution
A(t) = Aρ(t) for Q(x, t) satisfying ρ(0) = ρ0 and (2.9).

Remark 3. We require the higher regularity Q ∈ h3+α(Rn), q ∈ h2+α(Rn) as compared
to Theorem 1. This is due to the fact that we differentiate (2.8) (or (2.10)) with respect
to ρ for the application of the semigroup theory.

Remark 4. Depending on the ellipticity/hyperbolicity of Aρ0 , the linearized operator
has the opposite sign, which reflects in the assumption q ≶ 0. Thus, in both cases (i),
(ii), the moving domain A(t) shrinks under the flow (2.10).

The proof of Theorem 2 is mainly based on harmonic analysis. For the functional
analytic treatment of (2.10), we first derive the corresponding evolution equation in
terms of ρ defined on a fixed surface ∂A0. We then analyze the spectral properties of its
linearized operator by representing its principal part as a Fourier multiplier operator,
and prove that it generates a strongly continuous analytic semigroup. The details of
the proof can be found in [7].
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