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Abstract

A method that uses order statistics to construct multivariate distributions
with fixed marginals is proposed by Baker (2008). We investigate the prop-
erties of Baker’s bivariate distributions. The properties include the weak
convergence to the Fréchet–Hoeffding upper bound, the product-moment
convergence and the totally positivity of order 2. As Baker’s distribution
utilizes a representation of the Bernstein copula in terms of a finite mix-
ture distribution, we propose expectation-maximization (EM) algorithms
to estimate the Bernstein copula and give illustrative examples using real
data sets and a 3-dimensional simulated data set. These studies show that
the Bernstein copula is able to represent various distributions flexibly and
that the proposed EM algorithms work well for such data. Using B-spline
functions, we construct a new class of copulas, B-spline copulas, that in-
cludes the Bernstein copulas as a special case. The range of correlation of
the B-spline copulas is examined, and the Fréchet–Hoeffding upper bound
is proved to be attained when the number of B-spline functions goes to
infinity. As the B-spline functions are well-known to be an order-complete
weak Tchebycheff system, we show that the property of total positivity of
any order (TP∞) follows for the maximum correlation case. These results
extend the classical results for the Bernstein copulas. In addition, we derive
in terms of the Stirling numbers of the second kind an explicit formula for
the moments of the related B-spline functions on [0,∞).

1. Introduction
A novel method that applied the theory of order statistics to construct multivariate
distributions with given marginal distributions was developed by Baker [1]. We refer
to Lin, et al. [15] for a recent survey of this topic.

Baker’s idea, applied to univariate cumulative distribution functions F and G, can
be described as follows: Let {X1, . . . , Xm} and {Y1, . . . , Yn} be independent random
samples from the distributions F and G, respectively. Let Xk,m be the kth smallest
order statistic of {X1, . . . , Xn}, and denote by Fk,m the distribution of Xk,m; we write
this as Xk,m ∼ Fk,m. Similarly, we denote by Yl,n the lth smallest order statistic of
{Y1, . . . , Yn} and we let Gl,n be its corresponding distribution, written Yl,n ∼ Gl,n.
(Note that F and G can be discrete distributions.)

Let R = (rkl)1≤k,l≤n be a parameter matrix whose matrix entries rkl satisfy the
conditions

m∑
k=1

rkl =
1

n
,

n∑
l=1

rkl =
1

m
, rkl ≥ 0, k = 1, 2, . . .m, l = 1, 2, . . . , n. (1)
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Now choose the pair (Xk,m, Yl,n) with probability rkl, k = 1, 2, . . .m, l = 1, 2, . . . , n.
Then (Xk,m, Yl,n) follows Baker’s bivariate distribution: For x, y ∈ R, the joint cumu-
lative distribution function H(x, y) := Pr(Xk,m ≤ x, Yl,n ≤ y) satisfies

H(x, y) =
m∑
k=1

n∑
l=1

rklFk,m(x)Gl,n(y)

= (F1,m(x), . . . , Fm,m(x))R (G1,n(y), . . . , Gn,n(y))
T,

(2)

where “T” denotes transpose.

For maximal correlation, Baker [1] proposes the bivariate distribution of (X, Y ):

Hn(x, y) = Pr(X ≤ x, Y ≤ y)

=
1

n

n∑
k=1

Fk,n(x)Gk,n(y) for all x, y ∈ R ≡ (−∞,∞), when m = n, (3)

where

Fk,n(x) = Pr(Xk,n ≤ x) = n

(
n− 1

k − 1

)∫ F (x)

0

tk−1(1− t)n−kdt

= k

(
n

k

)∫ F (x)

0

tk−1(1− t)n−kdt,

and Gk,n has a similar form (see, e.g., (1) of Hwang and Lin[9]). Indeed, the distri-
bution Hn has marginals F and G because Hn(x,∞) = 1

n

∑n
k=1 Fk,n(x) = F (x) and

Hn(∞, y) = 1
n

∑n
k=1Gk,n(y) = G(y).

This article is organized as follows. In Section 2, we consider the asymptotic prop-
erties of Baker’s distribution. In Section 3, we confirm Baker’s distribution is the
Bernstein copula and provide an EM algorithm for estimating joint density function.
In Section 4, we define the B-spline copula as a generalization of the Bernstein copula
and examine its dependence properties for its maximum correlation case. Finally, we
make a summary in Section 5.

2. Asymptotic properties of Baker’s distributions

In this section we provide the limiting distribution of Baker’s bivariate distribution Hn

as well as the limits of product moments E[(Xn)
p(Yn)

q].

Theorem 1 Let (Xn, Yn) be a sample generated from Baker’s distribution Hn with
absolutely continuous marginals F and G. Let Un =

√
n(G(Yn) − F (Xn)). Then, as

n → ∞, (Xn, Un) converges in distribution to (X̃, Ũ) whose joint density is

k(x, u) =
1

2
√

πF (x)F̄ (x)
exp

{
− u2

4F (x)F̄ (x)

}
f(x),

where f is the density of F . The conditional distribution of Ũ given X̃ = x is the
normal distribution with mean 0 and variance 2F (x)F̄ (x):

Ũ |X̃=x ∼ N(0, 2F (x)F̄ (x)).



The proof can be done by applying a generalization of the so-called local limit
theorem for binomial probability.

From Theorem 1, we can see that G(Yn) − F (Xn)
p→ 0 as n → ∞. This implies

the weak convergence

(Xn, Yn)
d→ (X̃, Ỹ ) = (X̃,G−1(F (X̃))), X̃ ∼ F (n → ∞), (4)

where G−1 is the quantile function of G, namely, G−1(t) = inf{y : G(y) ≥ t}, t ∈ (0, 1).
The continuity of F and G are assumed in Theorem 1. Indeed, (4) holds for general F
and G in the following form.

Theorem 2 Let (Xn, Yn) be a sample generated from Baker’s distribution Hn with

general marginals F and G. Then, (Xn, Yn) converges in distribution to (X̃, Ỹ ) =
(F−1(Z), G−1(Z)) as n → ∞, where Z is a uniform random variable on (0, 1).

To illustrate Theorem 2, we now give three simulation results. Baker’s distribution
has the advantage that a random number (Xn, Yn) ∼ Hn can easily be generated as
follows:

(i) Generate X∗
1 , . . . , X

∗
n ∼ F i.i.d., and Y ∗

1 , . . . , Y
∗
n ∼ G i.i.d.

(ii) Generate K ∼ Unif{1, . . . , n}.

(iii) Then, (Xn, Yn)
d
= (X∗

(K), Y
∗
(K)) (the pair of the Kth smallest order statistics).

Figure 1 shows the scatter plots of two random samples of size 50 from Baker’s dis-
tribution Hn with n = 3 and 100. In this simulation, F is a normal distribution N(0, 1),
and G is a logistic distribution with mean 0 and variance 1, denoted by Logistic(0, 1).
We can see that the larger n is, the more tightly random points accumulate around
the curve {(x, y) : F (x) = G(y)} = {(F−1(t), G−1(t)) : t ∈ (0, 1)}.
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Figure 1: Two random samples (circles and crosses) from Hn with marginals N(0, 1)
and Logistic(0, 1).



When F is a continuous distribution with a density function f , whereas G is a
discrete distribution defined by Pr(Y = yi) = qi, i ∈ Z, where · · · < y−1 < y0 < y1 <
· · · is an increasing sequence, the limiting distribution of Hn is described as follows:

Pr(X̃ ∈ (x, x+ dx), Ỹ = yj)

dx
=

{
f(x), if F (x) ∈ (Qj−1, Qj),

0, otherwise.

The examples depicted in Figure 2 are generated from Baker’s distribution Hn with
F the standard normal distribution N(0, 1) and G a binomial distribution Bin(6; 0.3)
for n = 3 and 100, respectively. The limiting support is displayed by the solid line.
Sample sizes in both panels are 50. Most random points gather on the limiting support
when n = 100.
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Figure 2: Two random samples (circles) from Hn with marginals N(0, 1) and
Bin(6; 0.3).

Suppose that the marginal distributions F and G are discrete such that

Pr(X = xi) = pi, Pr(Y = yi) = qi, i ∈ Z,

where · · · < x−1 < x0 < x1 < · · · and · · · < y−1 < y0 < y1 < · · · are increas-
ing sequences. Then, the limiting distribution of Hn is a discrete distribution with
probability

Pr((X̃, Ỹ ) = (xi, yj)) = Pr(Z ∈ (Pi−1, Pi), Z ∈ (Qj−1, Qj))

= max{min{Pi, Qj} −max{Pi−1, Qj−1}, 0},

where Pi =
∑

j≤i pj and Qi =
∑

j≤i qj. The two random point sets plotted in Figure 3
are sampled from Baker’s distribution Hn with binomial distributions F = Bin(5; 0.5)
and G = Bin(6; 0.3) for n = 3 and n = 100, respectively. The limiting support
{(F−1(t), G−1(t)) : t ∈ (0, 1)} is displayed by the small pluses. Sample sizes of the two
samples are 50. Because of the overprinting, only few random points are shown. We
can see that in case of n = 100, more random points overlap on the limiting support
than in case of n = 3.
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Figure 3: Two random samples (circles) from Hn with marginals F = Bin(5; 0.5) and
G = Bin(6; 0.3).

The next theorem states that the convergence of {Hn}∞n=1 to the Fréchet–Hoeffding
upper bound is not only in the sense of weak convergence but in the sense of convergence
of moments. This is a particular feature of the distributions with their marginals fixed.
The proof is given in [5].

Theorem 3 Let (Xn, Yn) be a sample generated from Baker’s distribution Hn with

general marginals F and G. Let (X̃, Ỹ ) = (F−1(Z), G−1(Z)), Z ∼ Unif(0, 1), having
the limiting distribution. Let p and q be positive integers. If E[|Xn|p+q], E[|Yn|p+q] <
∞, then

lim
n→∞

E[Xp
nY

q
n ] = E[(X̃)p(Ỹ )q] =

∫ 1

0

(
F−1(t)

)p (
G−1(t)

)q
dt.

3. Bernstein copula

The Bernstein polynomial and its integral are known as the following forms:

bk,n(u) =

(
n

k

)
uk(1− u)n−k, Bk,n(u) =

∫ u

0

bk,n(t)dt, u ∈ [0, 1]. (5)

We also know that the distribution function of the kth smallest order statistic Xk,m of
X1, . . . , Xm is

Fk,m(x) =
m∑
j=k

(
m

j

)
F (x)j(1− F (x))m−j = m

∫ F (x)

0

(
m− 1

k − 1

)
tk−1(1− t)m−kdt.

Using the notation above, we can rewrite the cdf as

Fk,m(x) = mBk−1,m−1 (F (x)) .

Similar for the lth smallest order statistic yl,n of Y1, . . . , Yn, the cdf can be written into

Gl,n(y) = nBl−1,n−1 (G(y)) .



Then (2) becomes

H(x, y;R) = mn
m∑
k=1

n∑
l=1

rk,lBk−1,m−1 (F (x))Bl−1,n−1 (G(y))

= CBern(F (x), G(y);R), (6)

which is called the Bernstein copula [20]. If the random variables are continuous, taking
derivatives, we can find their densities of the order statistics as

fk,m(x) = m

(
m− 1

k − 1

)
F (x)k−1(1− F (x))m−kf(x),

gl,n(y) = n

(
n− 1

l − 1

)
G(y)l−1(1−G(y))n−lg(y).

Rewriting them with the Bernstein polynomial, we have

fk,m(x) = mbk−1,m−1 (F (x)) f(x), gl,n(y) = nbl−1,n−1 (G(y)) g(y).

Then the density function of the bivariate Baker’s distribution can be rewritten into a
form with the Bernstein copula density

h(x, y;R) = mn

m∑
k=1

n∑
l=1

rk,lbk−1,m−1(F (x))bl−1,n−1(G(y))f(x)g(y)

= cBern(F (x), G(y);R)f(x)g(y). (7)

Hence, for random variable U, V ∼ i.i.d.Unif(0, 1), the Bernstein copula and its
density are

CBern(u, v;R) = mn
m∑
k=1

n∑
l=1

rk,lBk−1,m−1 (u)Bl−1,n−1 (v) and

cBern(u, v;R) = mn
m∑
k=1

n∑
l=1

rklbk−1,m−1(u)bl−1,n−1(v), (8)

respectively.

3.1. EM algorithms based on the pseudo-likelihood function

Copulas are used to model dependence structures for multivariate data sets([18], [22]).
Among the class of copulas, the Bernstein copula has two remarkable features. First,
because of the Weierstrass approximation theorem, any 2-dimensional copula can be
approximated uniformly on [0, 1]2 by the Bernstein copula density (8), when m and
n are sufficiently large. Therefore, any continuous bivariate density function can be
approximated by the density arising from the Bernstein copula. A second remarkable
feature of the Bernstein copula is that it is a finite mixture distribution. This allows
us to apply the expectation-maximization (EM) algorithm [17] to estimate parameters.
In this subsection, we suppose that X and Y are continuous random variables, and
that F and G are absolutely continuous with densities f and g, respectively. We also
assume that the marginal distributions F and G have been estimated in advance, and
we shall treat them in the subsequent analysis as known functions.



On the basis of a random sample of size N on (X, Y ), let FN and GN denote
the marginal empirical distributions of X and Y . We take F and G to be estimated
by NFN/(N + 1) and NGN/(N + 1), respectively. If f and g, the corresponding
density functions of F and G, exist then we estimate them with kernel estimators. The
likelihood function with F , G, f and g replaced by their corresponding estimators is
called the pseudo-likelihood function.

Suppose that an independent, identically distributed (i.i.d.) sample (xi, yi), i =
1, . . . , N , is obtained from Baker’s distribution (7). According to the standard method
for estimating a finite mixture distribution, we introduce a pair of unobserved variables
(Ki, Li) for observation i, with probability Pr(Ki = k, Li = l) = rk,l, k ∈ {1, . . . ,m},
l ∈ {1, . . . , n}, i = 1, . . . , N . We also define an m× n matrix τi = (τi,k,l) as a dummy
variable with elements

τi,k,l =

{
1, if (Ki, Li) = (k, l)

0, if (Ki, Li) ̸= (k, l)

i = 1, . . . , N . Note that τi and (Ki, Li) are one-to-one. The likelihood for the full data
set (xi, yi, τi), i = 1, . . . , N , is given by

N∏
i=1

m∏
k=1

n∏
l=1

{
rk,lfk:m(xi)gl:n(yi)

}τi,k,l . (9)

The E-step in the EM algorithm calculates the conditional expectation of τi,k,l given
(xi, yi), i = 1, . . . , N ; that is,

τ̂i,k,l = E
[
τi,k,l | (xi, yi)1≤i≤N ;R

]
=

rk,lfk:m(xi)gl:n(yi)

h(xi, yi;R)

=
rk,lbk−1,m−1(F (xi))bl−1,n−1(G(yi))

c(F (xi), G(yi);R)
. (10)

The M-step maximizes the logarithm of the likelihood (9) with respect to rk,l by as-
suming τi,k,l = τ̂i,k,l. The logarithm of the expectation of (9) divided by N is

1

N

N∑
i=1

m∑
k=1

n∑
l=1

τ̂i,k,l log(rk,lfk:m(xi)gl:n(yi)) =
m∑
k=1

n∑
l=1

τ̄k,l log rk,l + const., (11)

where τ̄k,l =
∑N

i=1 τ̂i,k,l/N .

Maximizing the function (11) is a convex problem which has a unique maximizer
R∗ = (r∗k,l) because (11) is a proper concave function in rk,l and the region for R = (rk,l)
defined by (1) is convex. Moreover, if τ̄k,l > 0 for all k, l then the maximizer R∗ is a
(relative) interior point of the region (1); in that case, the maximizer R∗ is obtained by
the Lagrange multiplier method under the conditions

∑n
l=1 rk,l = 1/m,

∑m
k=1 rk,l = 1/n

for all k and l.

We introduce Lagrange multipliers µk and λl, and proceed to maximize

L =
m∑
k=1

n∑
l=1

τ̄k,l log rk,l −
∑
k

µk

(∑
l

rk,l −
1

m

)
−

∑
l

λl

(∑
k

rk,l −
1

n

)



with respect to rk,l, µk and λl. Then, the maximizers r∗k,l, µ
∗
k and λ∗

l are obtained as
the solution of

∂L

∂rk,l
=

τ̄k,l
rk,l

− µk − λl = 0

subject to the restrictions in (1).
To find µ∗

k and λ∗
l satisfying

rk,l =
τ̄k,l

µk + λl

> 0 (12)

as well as the restriction (1), we propose the following procedure:

Algorithm 3.1
Step M0: Set µ

(0)
k = 1/2 and t = 0.

Step M1: For fixed µ(t) =
(
µ
(t)
1 , . . . , µ

(t)
m

)′
, and for 1 ≤ l ≤ n, find λ

(t)
l numerically

as a unique solution λl of

m∑
k=1

τ̄k,l

µ
(t)
k + λl

=
1

n
such that λl > −min

k

(
µ
(t)
k

)
.

Step M2: For fixed λ(t) =
(
λ
(t)
1 , . . . , λ

(t)
n

)′
, and for 1 ≤ k ≤ m, find µ̃

(t)
k numerically

as a unique solution µ̃k of

n∑
l=1

τ̄k,l

µ̃k + λ
(t)
l

=
1

m
such that µ̃k > −min

l

(
λ
(t)
l

)
.

Step M3: Let

µ
(t)
k = µ̃

(t)
k − 1

m

( m∑
k=1

µ̃
(t)
k −

m∑
k=1

µ
(0)
k

)
, 1 ≤ k ≤ m.

Increase the counter t by 1, and repeat Steps M1–M3 until (12) converges.

To apply the EM algorithm, we will use

r̃k,l = #

{
i
∣∣∣ k − 1

m
<

N

N + 1
FN(xi) ≤

k

m
,
l − 1

n
<

N

N + 1
GN(yi) ≤

l

n

}/
N. (13)

as an initial value of rk,l the estimator given by [20] and [10]. Then the EM algorithm
is summarized as follows.

Algorithm 3.2
Step 0: Set rk,l equal to r̃k,l in (13).
Step 1: Find τ̂i,k,l by (10) (E-step).
Step 2: Update rk,l by Algorithm 3.1, Steps M0–M3 (M-step).
Repeat Steps 1 and 2 until τ̂i,k,l converges.

Note that this algorithm can be extended to Baker’s distributions with three or
more variables.



3.2. Illustrative examples

In this section, we demonstrate how our algorithms perform in practical data analysis.
The results show that the algorithms work well in all the illustrative examples.

3.2.1. Consomic mouse data

The first data set consists of measurements of blood concentrations of biochemical
substances in mice, and we apply Algorithm 3.2 for fitting Baker’s distribution (7)
with continuous variables.

The data set ([24], [25])consists of measurements of triglycerides (TG) and plasma
high-density lipoprotein cholesterol (HDL) as plotted in Figure 5.

Using the Gaussian kernel estimator, we first estimate the marginal density func-
tions. The bandwidths are selected according to Silverman’s “rule of thumb” [23]. We
use the empirical distribution functions to approximate the (cumulative) distribution
functions. The estimated marginal densities and distribution functions are shown in
the left and right panels, respectively, of Figure 4. Subsequently, we estimate the Bern-
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Figure 4: Estimated marginals of TG and HDL.
(Left: density functions. Right: cumulative distribution functions.)

stein copula density (8) with the EM algorithm (Algorithm 3.2) for fixed m and n. In
the estimation, we determine the matrix size of R by the Akaike information criterion
(AIC) [13]. From Table 1, we find that the AIC attains its minimum value, 5210.52,
when (m,n) = (2, 3). Table 1 also shows that the cases in which (m,n) = (2, 2) and
(m,n) = (2, 3) have very close AIC values; indeed, the estimated contours based on
these two cases are very similar.

For the case in which (m,n) = (2, 3), the initial value R̃ in (13) and the MLE R̂

obtained as the limit of sequence starting from R̃ are

R̃ =

(
0.232 0.137 0.118
0.099 0.188 0.226

)
and R̂ =

(
0.333 0.106 0.061
0.000 0.227 0.273

)
,

respectively. The consistent estimate of the covariance of (r̂11, r̂12, r̂13, r̂21, r̂22, r̂23)
′ is



Table 1: AIC for female consomic mouse data.
(The minimum AIC is indicated with a box.)
m \ n 1 2 3 4 5 6 8 10

1 5242.00 5242.00 5242.00 5242.00 5242.00 5242.00 5242.00 5242.00

2 5242.00 5210.57 5210.52 5212.15 5211.15 5210.80 5212.67 5216.23
3 5242.00 5212.55 5211.94 5214.22 5215.47 5217.64 5223.91 5230.53
4 5242.00 5214.56 5215.69 5219.16 5220.33 5224.48 5234.19 5244.29
5 5242.00 5215.37 5218.51 5223.65 5226.87 5232.10 5246.20 5259.89
6 5242.00 5216.59 5220.58 5225.99 5231.44 5238.67 5256.04 5273.77
8 5242.00 5218.77 5225.45 5233.77 5242.13 5253.45 5277.90 5302.69
10 5242.00 5221.55 5229.78 5241.92 5253.58 5268.72 5300.85 5332.22

calculated as 
0.003 −0.001 −0.003 −0.001 0.001 −0.002
−0.001 0.003 0.003 −0.002 0.000 0.002
−0.003 0.003 0.010 −0.003 −0.004 0.003
−0.001 −0.002 −0.003 0.006 0.002 −0.003
0.001 0.000 −0.004 0.002 0.003 −0.002
−0.002 0.002 0.003 −0.003 −0.002 0.005

 .

A contour plot of the estimated joint density h(x, y; R̂) is shown in Figure 5.
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Figure 5: TG and HDL data (female consomic mice) and estimated contour.
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3.2.2. Simulated trivariate data with interaction

The second example is an artificial trivariate continuous data. The data are generated
by the following two steps. First, we generate data (u1,i, u2,i, u3,i), i = 1, . . . , N , from



a trivariate Baker’s distribution with the copula density

c(u1, u2, u3) = n1n2n3

n1∑
k1=1

n2∑
k2=1

n3∑
k3=1

rk1,k2,k3

3∏
j=1

bkj−1,nj−1(uj). (14)

Here, the parameter R = (rk1,k2,k3) is defined as

rk1,k2,1 =
1

2n1n2

(for all k1, k2), rk1,k2,2 =

{
1

2n1
(if k1 = k2),

0 (if k1 ̸= k2),

with n1 = n2 = 20 and n3 = 2. The sample size is chosen to be N = 2000. Also, we
convert the uniform marginals to normal marginals by xi = Φ−1(u1,i), yi = Φ−1(u2,i),
zi = Φ−1(u3,i), where Φ−1(·) is the quantile function of the standard normal distribu-
tion. We then obtain random data (xi, yi, zi) whose marginals are the standard normal
distribution.

The first row of Figure 6 depicts scatter plots for the first and second variates (X,Y )
stratified with the third variable Z. The correlation between X and Y is designed to
be increasing in Z, and the marginals of (X,Z) and (Y, Z) are independent. From the
three panels, we can see that X and Y are almost independent when Z is small and
they are highly correlated when Z is large.

We fit the Bernstein copula density (14) with an extended version of Algorithm
3.2 as well as Algorithm 3.1 for this 3-dimensional data set. The contours of the
estimated density function are shown in the second row of Figure 6, and we see that
the Bernstein copula represents well the characteristic of the changing correlation. For
comparison, we also plot the contours estimated with the Gaussian copula in the last
row of the figure even though a Gaussian copula obviously cannot adapt to the change
of correlation (i.e., the 3-way interaction). Nevertheless, this example demonstrates
the flexibility of the Bernstein copula and the usefulness of the EM algorithm for 3-
dimensional data.

EM algorithms are also available when some of the random variables are discrete
and when the joint distribution is considered as a mixture of an independent case and
the maximum correlated case of Baker’s distribution. All the EM algorithms, more
examples and detailed analysis can be found in [6].

4. B-spline copulas
We consider first a general setting based on order-complete weak Tchebycheff systems
(OCWT-systems) [11], and then we define a class of B-spline copulas that includes the
Bernstein copulas as special cases. After that, we investigate the dependence properties
of the most correlated case of the B-spline copula. We also involve the moments of the
B-spline functions.

4.1. Definition of the B-spline copula

Let qk ≥ 0, k = 1, . . . , n,
∑n

k=1 qk = 1, and let ϕ1, . . . , ϕn be probability densities on
[0, 1] such that

n∑
k=1

qk ϕk(t) = 1, (15)

t ∈ [0, 1]. We assume further that {ϕ1, . . . , ϕn} is an OCWT-system, i.e.,

(i) ϕ1, . . . , ϕn are linearly independent, and
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Figure 6: Simulated trivariate data and estimated contours.
Scatter plots for stratified data (first row), the estimated density with a Bernstein
copula (second row), and the estimated density with a Gaussian copula (third row) for
three cases of (X, Y |Z).
Left: Z is small (Z < 0.1); Center: Z is moderately-sized (0.45 < Z < 0.55); Right: Z
is large (Z > 0.9).



(ii) ϕk(t) is totally positive of order n (TPn) in (k, t), i.e., for each r = 1, . . . , n,

det
(
ϕki(tj)

)
r×r

≥ 0 (16)

for all k1 > · · · > kr and t1 > · · · > tr.

See Karlin and Studden [12, Chapter 1] or Schumaker [21, Chapter 2] for examples of
OCWT systems.

Let q1k ≥ 0, k = 1, . . . , n1, such that
∑n1

k=1 q1k = 1. Also, let q2l ≥ 0, l = 1, . . . , n2,
such that

∑n2

l=1 q2l = 1. Letting

Φk(u) =

∫ u

0

ϕk(t) dt,

u ∈ [0, 1], we define the B-spline copula, a generalization of the Bernstein copula (6),
by

C(u, v;R) =

n1∑
k=1

n2∑
l=1

rk,l Φk(u) Φl(v), (17)

u, v ∈ [0, 1], with parameter matrix

R = (rk,l)1≤k≤n1; 1≤l≤n2 , rk,l ≥ 0,
n1∑
k=1

rk,l = q2l,

n2∑
l=1

rk,l = q1k, k = 1, 2, . . . , n1, l = 1, 2, . . . , n2.
(18)

The copula (17) is a bona fide copula since, for any u ∈ [0, 1],

C(u, 1;R) =

n1∑
k=1

n2∑
l=1

rk,lΦk(u) =

n1∑
k=1

q1kΦk(u)

=

∫ u

0

n1∑
k=1

q1kϕk(t) dt =

∫ u

0

1 dt = u;

and similarly, C(1, v;R) = v, v ∈ [0, 1].

4.2. The maximum correlation copula

From now on, we restrict our attention to the case in which n1 = n2 = n and q1k =
q2k = qk; further, we use the notation Q = diag(qk)1≤k≤n for the diagonal matrix with
diagonal entries q1, . . . , qn.

Theorem 4 For the copula (17) with the parameter space (18), the maximum corre-
lation is attained when rkl = qkδkl, equivalently, R = Q.

In the maximum correlation case, C(u, v;R) becomes

C∗(u, v) := C(u, v;Q) =
n∑

k=1

qkΦk(u)Φk(v), (19)

u, v ∈ [0, 1].
To prove Theorem 4, we need the following crucial lemma.



Lemma 1 Let a1 ≥ · · · ≥ an ≥ 0 and b1 ≥ · · · ≥ bn ≥ 0 be given. Let q1, . . . , qn ≥ 0
satisfy

∑n
k=1 qk = 1. Then,

max∑
k rkl=ql∑
l rkl=qk
rkl≥0

n∑
k=1

n∑
l=1

rklakbl =
n∑

k=1

qkakbk.

Proof of Theorem 4. Since {ϕ1, . . . , ϕn} is an OCWT-system then, for all i < j and
s < t,

ϕi(s)ϕj(t)− ϕj(s)ϕi(t) = det

(
ϕi(s) ϕi(t)
ϕj(s) ϕj(t)

)
≥ 0.

Integrating this inequality with respect to (s, t) over s ∈ (0, u) and t ∈ (u, 1), we obtain

Φi(u)(1− Φj(u))− Φj(u)(1− Φi(u)) = Φi(u)− Φj(u) ≥ 0,

u ∈ [0, 1]. Therefore, we obtain the stochastic order,

Φ1(u) ≥ Φ2(u) ≥ · · · ≥ Φk(u)

for all u ∈ [0, 1]. Combining this result with Lemma 1, we obtain the inequality

C∗(u, v) := C(u, v;Q) ≥ C(u, v;R)

for all u, v ∈ [0, 1] and R satisfying (18). The theorem now follows from Hoeffding’s
covariance formula,

Cov(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞

[
Pr(X ≤ x, Y ≤ y)− Pr(X ≤ x) Pr(Y ≤ y)

]
dxdy

(see, e.g., [15]). The proof is complete. □
Functions ϕk satisfying (15) and (16) can be constructed by B-spline functions as

we now show. Let Nd
i be a B-spline function on [0, 1] of degree d (≥ 0) defined as a

non-zero B-spline basis with m+ 2d+ 1 knots:

t−d = · · · = t−1︸ ︷︷ ︸
d

= t0 = 0 < t1 < · · · < tm−1 < 1 = tm = tm+1 = · · · = tm+d︸ ︷︷ ︸
d

. (20)

Then, Nd
i (t) is generated by the recursion formula,

Nd
i (t) =

t− ti
ti+d − ti

Nd−1
i (t) +

ti+d+1 − t

ti+d+1 − ti+1

Nd−1
i+1 (t)

=
t− ti

ti+d − ti
Nd−1

i (t) +

(
1− t− ti+1

ti+d+1 − ti+1

)
Nd−1

i+1 (t),

t ∈ [0, 1], for i = −d, . . . ,−1, 0, 1, . . . ,m− 1, with initial conditions

N0
i (t) =


1, i < m and t ∈ [ti, ti+1),

or i = m− 1 and t = tm = 1,

0, otherwise

(see [2],[4] and [19]). The number of non-zero bases is

n = m+ d.

The B-spline is known to satisfy



(i) Nd
i (t) ≥ 0, t ∈ [0, 1],

(ii) The support is given by

suppNd
i = {t | Nd

i (t) > 0} = [ti, ti+d+1],

i = −d, . . . ,−1, 0, 1, . . . ,m− 1, and

(iii) The “partition of unity” property:

m−1∑
i=−d

Nd
i (t) = 1 for all t ∈ [0, 1].

For given d and m, let

qk = qk,d =

∫ 1

0

Nd
k−d−1(t) dt, ϕk(t) = ϕk,d(t) =

1

qk
Nd

k−d−1(t), (21)

where t ∈ [0, 1] and k = 1, 2, . . . , n (= m + d). Then, (15) holds, and we have the
following result (see [3], or [21, Theorems 4.18 and 4.65]).

Theorem 5 Under the hypotheses (20) and (21), the set {Nd
i }m−1

i=−d of B-spline func-
tions, and hence also the B-spline system {ϕ1, . . . , ϕn}, forms an OCWT-system satis-
fying (16).

Theorem 6 Let m = 1 and the degree d = n− 1(= n−m). Then the B-splines (21)
reduce to the Bernstein system (5). Specifically, for k = 1, . . . , n and t ∈ [0, 1],

qk = qk,d =
1

n
, ϕk(t) = ϕk,d(t) = bk,n(t).

This implies that the B-spline copula include the Bernstein copula as a special case.
From now on, for simplicity, we consider only the B-spline with equally-spaced

knots, i.e., the B-spline functions on [0, 1] of order d having knots given in (20) with
ti = i/m, i = 1, 2, . . . ,m− 1.

4.3. Range of correlation of the maximum correlation copula

For copula functions, the range of the correlation is of particular importance. In
particular, great attention is paid to the maximum achievable correlation (see, e.g., Lin
and Huang [16]). By Theorem 4, the maximum is attained when the copula density is

c∗(u, v) =
n∑

k=1

qkϕk(u)ϕk(v), u, v ∈ [0, 1]. (22)

Suppose that (U, V ) is from the copula density (22). Then,

E[UV ] =
n∑

k=1

qk

(∫ 1

0

uϕk(u) du

)2

.

Noting that E[U ] = E[V ] = 1/2 and Var(U) = Var(V ) = 1/12, it follows that

corr(U, V ) = 12
(
E[UV ]− 1

4

)
.



In the Bernstein case (m = 1), it follows from Theorem 6 that E[UV ] = (2n+1)/6(n+1)
and hence

corr(U, V ) = 1− 2

n+ 1
.

In order to calculate the maximum correlation for general d, we present first a
lemma in which it is understood that the vectors (qk) and (rk) reduce to the central
parts when d = 0.

Lemma 2 Suppose that m ≥ d ≥ 0, i.e., n = m + d ≥ 2d ≥ 0. Let Nd
i , i =

−d,−d+ 1, . . . ,m− 1, be the B-spline functions on [0, 1] of order d having knots (20)
with ti = i/m, i = 0, 1, . . . ,m. In addition, denote the integral and the first moment of
Nd

k−d−1 by

qk =

∫ 1

0

Nd
k−d−1(t) dt and rk =

∫ 1

0

tNd
k−d−1(t) dt,

k = 1, . . . , n. Then,

(qk)1≤k≤n =
1

m

(
1

d+ 1
,

2

d+ 1
, . . . ,

d

d+ 1︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
m−d

,
d

d+ 1
,
d− 1

d+ 1
, . . . ,

1

d+ 1︸ ︷︷ ︸
d

)
,

(rk)1≤k≤n =
1

m2

(
12(1 + 1)

2(d+ 1)(d+ 2)
,

22(2 + 1)

2(d+ 1)(d+ 2)
, . . . ,

d2(d+ 1)

2(d+ 1)(d+ 2)︸ ︷︷ ︸
d

,

d+ 1

2
,
d+ 3

2
, . . . ,

2m− 1− d

2︸ ︷︷ ︸
m−d

,m2(qd − rd), . . . ,m
2(q1 − r1)︸ ︷︷ ︸

d

)
.

Theorem 7 Under the assumptions of Lemma 2, suppose that (U, V ) have the copula
density c∗ in (22) with ϕk defined through the B-spline functions (21) having knots
given in Lemma 2. Then the correlation of (U, V ) is

corr(U, V ) = 1− d+ 1

(n− d)2
+

d(d+ 3)(2d+ 3)

5(d+ 2)(n− d)3
.

Theorem 8 Let C∗ be the maximum correlation copula function (19) that is con-
structed by the B-spline

{Nd
k−d−1}nk=1 = {Nd

i : i = −d,−d+ 1, . . . ,m− 2,m− 1}

on [0, 1] of degree d ≥ 0, having equally-spaced knots (20) with ti = i/m, i = 0, 1, . . . ,m,
where m ≥ d. As m → ∞, C∗(u, v) → min{u, v} for all u, v, the Fréchet–Hoeffding
upper bound.

This property is also inherited from the Bernstein copula [8].
Table 2 shows the maximum correlations when the number of basis functions is n.

In view of Table 2, the range of correlation for the B-spline copulas of small order d is
wider than that of the Bernstein copula. Indeed,

corr(U, V ) ≈ 1− d+ 1

n2
.



Table 2: Maximum correlations

Bernstein∗ d = 0 d = 1 d = 2 d = 3

n = 2 0.333 0.75 0.333 NA NA

n = 3 0.5 0.889 0.667 0.5∗ NA

n = 4 0.6 0.938 0.827 0.688 0.6∗

n = 5 0.667 0.96 0.896 0.796 0.72

n = 6 0.714 0.972 0.931 0.867 0.796

n = 7 0.75 0.980 0.951 0.908 0.851

n = 8 0.778 0.984 0.963 0.933 0.892

n = 9 0.8 0.988 0.971 0.949 0.919

n = 10 0.818 0.99 0.977 0.960 0.937

n 1− 2

n+ 1
1− 1

n2
1− 2(3n− 5)

3(n− 1)3
1− 6n− 19

2(n− 2)3
1− 2(50n− 231)

25(n− 3)3

*: Bernstein case (m = n− d = 1).

4.4. Total positivity of the maximum correlation copula

The next two results improve significantly the previous ones about the Bernstein cop-
ulas.

Theorem 9 The copula C∗ in (19) is TP∞, i.e., for any r ≥ 1,

det
(
C∗(ui, vj)

)
r×r

≥ 0

for all u1 > · · · > ur and v1 > · · · > vr.

Theorem 10 The copula density c∗ in (22) is TP∞ .

This can be proved by using the fact that B-spline functions are the Chebyshev system.
The detailed proofs and more TP∞ properties can be found in [7] and [14].

4.5. Moments of the B-spline functions with initial boundary

In this section, we provide the moment formula for the B-spline functions with initial
boundary at t = 0 defined on R+ = [0,∞). Let Nd

i be a B-spline function of degree
d ≥ 0 on R+ with knots:

t−d = · · · = t−1︸ ︷︷ ︸
d

= t0 = 0 < t1 = 1 < t2 = 2 < · · · (23)

Here, we have ti = (i)+ = max{i, 0} and, Nd
i (t) is generated by the following recursion

formula:

Nd
i (t) =

t− (i)+
(i+ d)+ − (i)+

Nd−1
i (t) +

(i+ d+ 1)+ − t

(i+ d+ 1)+ − (i+ 1)+
Nd−1

i+1 (t), (24)

d ≥ 1, with initial conditions

N0
i (t) =

{
1, i ≥ 0 and t ∈ [i, i+ 1),

0, otherwise.



For each i ≥ −d, Nd
i is a non-zero function with support [max{i, 0}, i + d + 1]. The

recurrence (24) can be written more concretely as

Nd
i (t) =



t− i

d
Nd−1

i (t) +
i+ d+ 1− t

d
Nd−1

i+1 (t), i ≥ 0,

t

i+ d
Nd−1

i (t) +
i+ d+ 1− t

i+ d+ 1
Nd−1

i+1 (t), −d < i ≤ −1,

(1− t)Nd−1
−d+1(t), i = −d,

0, i < −d.

For h ≥ 0, denote the h-moment of Nd
i ,

γd
i (h) :=

∫ ∞

−∞
thNd

i (t) dt =

∫ i+d+1

max{i,0}
thNd

i (t) dt;

this quantity was used in the proof of Lemma 2 above. Then, we have the following
recurrence relation for these moments.

γd
i (h) =



γd−1
i (h+ 1)− iγd−1

i (h)

d

+
(i+ d+ 1)γd−1

i+1 (h)− γd−1
i+1 (h+ 1)

d
, i ≥ 0,

γd−1
i (h+ 1)

i+ d

+
(i+ d+ 1)γd−1

i+1 (h)− γd−1
i+1 (h+ 1)

i+ d+ 1
, −d < i < 0,

γd−1
−d+1(h)− γd−1

−d+1(h+ 1), i = −d,

0, i < −d,

with boundary condition

γ0
i (h) =


(i+ 1)h+1 − ih+1

h+ 1
, i ≥ 0,

0, i < 0.

The next result, which is interesting in its own right, presents the solution of the
recurrence system in terms of the Stirling numbers of the second kind:

S(n, k) =
1

k!

k∑
j=0

(−1)j
(
k

j

)
(k − j)n.

Here, S(n, 0) = δn0, S(n, k) = 0 for n < k, and 00 ≡ 1 whenever it arises. Note also
that S(n, 1) = S(n, n) = 1 and S(n, n− 1) = n(n− 1)/2.

Theorem 11 For d ≥ 0, the h-moment of the B-spline function Nd
i in (23) is of the



form

γd
i (h) =



h∑
l=0

il
(
h

l

)
S(h+ d+ 1− l, d+ 1)(

h+ d+ 1− l

d+ 1

) , i ≥ 0,

i+ d+ 1

d+ 1

S(h+ i+ d+ 1, i+ d+ 1)(
h+ d+ 1

d+ 1

) , −d ≤ i ≤ 0,

0, i < −d.

The proof is given in [7].

5. Conclusion Remark

For given marginals, Baker’s distribution is constructed with order statistics and the
parameter matrix (or array) which contains the dependence structure of the order
statistics. For the maximum correlation case, we investigated the limiting distribution
and the convergence of the product-moment as the size of the parameter (matrix or
array) is big enough. Baker’s distribution can be written into a copula form, and it
is called the Bernstein copula. As the Bernstein copula can be considered as a finite
mixture distribution, we proposed EM algorithms to estimate the parameters. With
the given marginals, we then estimated the joint density functions of multivariate data
sets. The Bernstein copula is expressed in terms of Bernstein functions. We know
that the Bernstein function is a special case of the B-spline function in which there is
no interior knot in the domain. We then could generalize the Bernstein copula, and
define the B-spline copula. For the maximum correlated case of the B-spline copula,
we examined the range of the correlation, proved its TP∞ property and showed that
it can reach the Fréchet–Hoeffding upper bound.
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