Klein群の函数論

志賀 啓成 (東京工業大学 理学院)*

1. Introduction

 $\mathrm{PSL}(2,\mathbb{C})=\mathrm{SL}(2,\mathbb{C})/\pm I$ の離散部分群を Klein 群($\mathrm{Kleinian\ group}$)と呼ぶ.すなわち 2×2 の複素行列の(射影的同値類の)なす群で,その自然な位相に関して離散的なものである.これがわれわれが取り扱う対象である.

Klein 群には後で述べるようにいくつかの aspects があるが,本講演では主にその函数論的 objects を興味の対象とする.具体的には, Klein 群の不連続領域であり,その変形空間である.不連続領域は Klein 群の作用に関して普遍な平面領域もしくは Riemann面の立場から考察する.変形空間は Teichmüller 空間の理論の延長線上にある対象物としてその構造を考察する.

2. Klein群

2.1. 導入

 $PSL(2,\mathbb{C})$ の行列

$$A = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 $(a, b, c, d \in \mathbb{C}; ad - bc = 1)$

にメビウス変換

$$\gamma_A(z) := \frac{az+b}{cz+d} \quad (z \in \mathbb{C})$$

を対応させることで, $\mathrm{PSL}(2,\mathbb{C})$ からメビウス変換全体のなす群 $\mathrm{M\ddot{o}b}(\mathbb{C})$ への同型が得られる.この対応で,行列 $A\in\mathrm{PSL}(2,\mathbb{C})$ と変換 $\gamma_A\in\mathrm{M\ddot{o}b}(\mathbb{C})$ は同一視される.

よく知られているように, $\mathrm{M\ddot{o}b}(\mathbb{C})$ はリーマン球面 $\widehat{\mathbb{C}}$ の自己等角写像全体 $\mathrm{Aut}(\widehat{\mathbb{C}})$ そのものであり,またこれは3次元双曲空間 $\mathbb{H}^3=\{(z,t)\mid z\in\mathbb{C}, t>0\}$ の向きを保つ自己等距離写像全体の空間 $\mathrm{Isom}^+(\mathbb{H}^3)$ とも同一視される.つまり,これらより次の同一視が得られる.

$$\operatorname{PSL}(2,\mathbb{C}) \simeq \operatorname{M\"ob}(\mathbb{C}) \simeq \operatorname{Aut}(\widehat{\mathbb{C}}) \simeq \operatorname{Isom}^+(\mathbb{H}^3).$$
 (1)

したがって, $G \subset \mathrm{PSL}(2,\mathbb{C})$ が Klein 群であるとき,G は上の同一視によってそれぞれの部分群とみなせ,いくつかの $\mathrm{aspects}$ からの観察が可能になる.例えば $\mathrm{Isom}^+(\mathbb{H}^3)$ の部分群とみなしたとき,G は \mathbb{H}^3 に真性不連続に作用していることが分かる.したがって,その商空間 $N_G := \mathbb{H}^3/G$ には双曲計量が定義され, N_G は 3 次元双曲多様体(もしくはorbifold)となる.つまり,単なる 2×2 行列の部分群であったものと,豊穣たる 3 次元多様体論とのつながりがついたことになる.

もう一つ別の見方を与えよう.与えられた Klein 群 G に対し, \mathbb{H}^3 の 1 点 o の軌道 $Go=\{G(o)\mid G\in G\}$ を考える.G の \mathbb{H}^3 の作用は真性不連続であったから,G が無限群の時,Go は \mathbb{H}^3 の境界 $\partial\mathbb{H}^3=\widehat{\mathbb{C}}$ にのみ集積点を持つ.この集積点全体を Klein 群

^{*〒152-8551} 東京都目黒区大岡山2-12-1,東京工業大学 理学院 数学系e-mail: shiga@math.titech.ac.jp

Gの極限集合 (the limit set) と呼び , $\Lambda(G)$ と書く . $\Lambda(G)$ は基点 $o \in \mathbb{H}^3$ の取り方には依らないことが分かる . 極限集合はその定義から $\widehat{\mathbb{C}}$ の閉集合であるが , 時には有限集合になることがある . しかし , その場合 Klein 群は初等的と呼ばれ , その構造はよく分かっている . 本講演ではそれは興味の対象とはせず , Klein 群は全て非初等的 , すなわち極限集合は無限集合であると仮定する .

Klein 群Gの極限集合 $\Lambda(G)$ のリーマン球面における補集合を $\Omega(G)$ と書き,Gの不連続領域($the\ region\ of\ discontinuity)という.不連続領域は定義より開集合であるが,空集合になる場合もある.本講演で扱う<math>Klein$ 群は,不連続領域は常に空でないと仮定する.このとき, $\Omega(G)$ の連結成分をGの成分 (component) と呼び,さらに $G(\Omega_0)=\Omega_0$ となるGの成分 (component) という.

以上の仮定の下,与えられた ${
m Klein}$ 群 G の極限集合 $\Lambda(G)$ と不連続領域 $\Omega(G)$ の基本的性質として次を挙げておく.

- 1. $\Lambda(G)$, $\Omega(G)$ は共にG不変である. すなわち, $G(\Omega(G)) = \Omega(G)$, $G(\Lambda(G)) = \Lambda(G)$.
- $2. \ \Omega(G)$ はG が真性不連続に作用する最大の開集合である.
- $3. \ \Lambda(G)$ は G 不変な最小の閉集合であり,G の位数無限大の元の固定点全体の閉包である.
- 4. $\Lambda(G)$ は完全集合 (perfect set) であり, したがって非可算集合である.

2番目の性質より, $\Omega(G)$ の G による商空間 $\Omega(G)/G$ には自然に Riemann 面(または orbifold) の構造が入る. つまり今度は Riemann 面との繋がりが得られたわけである.

初めに挙げた 3 次元双曲多様体 N_G に関連して言えば, $\Omega(G)/G$ は N_G の境界に現れている.さらに, $\Lambda(G)$ の \mathbb{H}^3 における双曲的凸核(convex core)hull($\Lambda(G)$) の境界に擬似的に現れるものでもある.hull($\Lambda(G)$) はその定義から G 不変な \mathbb{H}^3 の閉集合であるが,hull($\Lambda(G)$)/G の ε -近傍($\varepsilon>0$)の双曲体積が有限であるとき,Klein 群 G は幾何学的有限 (geometrically finite) であるという.また,ある $\varepsilon>0$ が存在して,3 次元双曲多様体 N_G の単射半径が ε より大きいとき,G (もしくは N_G) は有限幾何(bounded geometry)を持つ呼ばれる.

ここで,Klein 群とRiemann 面の関係についての最も基本的であり,かつ議論の出発点というべき事実を挙げる (cf. [29]) .

Theorem 2.1 (Ahlforsの有限性定理). Gを有限生成 Klein群とする.このとき, $\Omega(G)/G$ は有限型 Riemann面の有限和となる.

ただしRiemann面が"有限型"であるとは,それが閉Riemann面から有限個の点を除いたときをいう。

2.2. 例

1) Fuchs 群

X を Riemann 面とする .X が $\widehat{\mathbb{C}}$, \mathbb{C} , \mathbb{C}^* またはトーラスのいずれとも等角同値でなければ , X の普遍被覆面は上半平面 $\mathbb{H}=\{z\in\mathbb{C}\mid \mathrm{Im}\;z>0\}$ と等角同値になる . したがって , その被覆変換群 Γ_X は $\mathrm{Aut}(\mathbb{H})\simeq\mathrm{PSL}(2,\mathbb{R})$ の離散部分群とみなせ , $\mathbb{H}/\Gamma_X=X$ である . 群としては Γ_X は X の基本群と同型である .

一般に $\mathrm{PSL}(2,\mathbb{R})$ の離散部分群を Fuchs 群と呼ぶ、 Fuchs 群は \mathbb{H} に真性不連続に作用している、したがって G_X は Fuchs 群で,

$$\Omega(\Gamma_X) \supset \mathbb{H}, \quad \widehat{\mathbb{R}} \supset \Lambda(\Gamma_X)$$

となっている.Riemann 面 X が有限型であれば, $\Omega(\Gamma_X)=\mathbb{H}\cup\mathbb{L}, \Lambda(\Gamma_X)=\widehat{\mathbb{R}}$ となる.ただし, $\mathbb{L}:=\{z\in\mathbb{C}\mid \mathrm{Im}\;z<0\}$.

2) Schottky 群

g>1なる自然数に対し, \mathbb{C} 上に2g個の互いに交わらない単純閉曲線 C_1,C_2,\ldots,C_{2g} をとる.さらに,ある $\gamma_j\in\mathrm{PSL}(2,\mathbb{C})$ $(j=1,2,\ldots,g)$ が存在して, C_{2j-1} の内部が γ_j によって C_{2j} の外部に写されていると仮定する.すると $\gamma_1,\gamma_2,\ldots,\gamma_g$ によって生成される群 $G\subset\mathrm{PSL}(2,\mathbb{C})$ は Klein 群となり,極限集合 $\Lambda(G)$ は Cantor 集合 1 で, $\Omega(G)/G$ は種数 g の閉 Riemann 面になることがわかる.また群としては G は loxodromic elements からなる rank g の自由群になる.このように構成された Klein 群を Schottky 群と呼ぶ.単純閉曲線 C_1,C_2,\ldots,C_{2g} が全て円であるとき,G は古典的 Schottky 群と呼ばれる.

Riemann 面 X が閉 Riemann 面から互いに素な有限個の連続体を除いたものであるとき,その Fuchs 群 Γ_X は古典的 Schottky 群となる.また,上の構成法で対となっている単純閉曲線—例えば C_1,C_2 —が互いに接しているとき, γ_1,\dots,γ_g を同様に取ってKlein 群 G を構成することができる.この場合も G の極限集合 $\Lambda(G)$ は Cantor 集合になるが,G は parabolic な元を含むものになる.このように構成された Klein 群を(カスプを持つ)拡張された Schottky 群と呼ぶ.

3) 擬 Fuchs 群, 境界群

有限型 Riemann 面 X の Fuchs 群 Γ_X に対して,ある擬等角写像 $\varphi:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ が存在して,

$$\Gamma_X^{\varphi} := \varphi \Gamma_X \varphi^{-1}$$

が再び Klein 群になるとき, Γ_X^{φ} を(第1種)擬 Fuchs 群と呼ぶ.このとき, $\Omega(\Gamma_X^{\varphi})=\varphi(\mathbb{H})\cup\varphi(\mathbb{L}),\Lambda(\Gamma_X^{\varphi})=\varphi(\widehat{\mathbb{R}})$ である.

T(X)をXの Teichmüller 空間とする.Bers の埋め込みによって,T(X) は Γ_X から上のように得られた擬 Fuchs 群の空間の中の集合とみなせる ([6]).さらにこの意味での境界には,やはり Klein 群が現れる.その群はただ一つの単連結な不変成分を持つ Klein 群として特徴付けられている.このような Klein 群を境界群あるいは b-群という.幾何学的に有限な b-群は regular b-群と呼ばれる.これは stable curve,つまり Riemann 面X 上の有限個の単純閉曲線をそれぞれ 1 点に退化させてできる nodes 付き Riemann 面に対応したものとして現れている.

3. 不連続領域の函数論的性質

3.1. 不変成分の解析

 Klein 群 G の不連続領域 $\Omega(G)$ はリーマン球面 $\widehat{\mathbb{C}}$ の開部分集合で,その連結成分の境界は極限集合 $\Lambda(G)$ の点からなっている. $\Lambda(G)$ は G 不変な集合であるので,一般に複雑な形状をしている 2 . したがって,G の成分は複雑な境界を持った平面領域となってい

¹ここで Cantor 集合は一般の意味で,全不連結な完全集合を指す.

 $^{^2}$ 例えば多くの場合,極限集合の2次元測度は0だが,そのハウスドルフ次元は真に1より大きい.

る.ここではその函数論的性質を考える.これに関して,まず $\operatorname{McMullen}$ による次の結果を挙げる ([30]) .

Proposition 3.1. Ω_0 を有限生成 Klein 群 G の不変成分とする.このとき以下は同値である.

- 1. Ω_0 は John domain である.
- 2. G は幾何学的有限で、その放物的変換は Ω_0 内のある円板を不変にする.

これは次のように改良される([41]).

Theorem 3.1. Proposition 3.1 と同じ仮定の下で以下は同値である.

- 1. Ω_0 は John domain である.
- 2. Ω_0 は Hölder domain である.
- $\it 3.~G$ は幾何学的有限で $\it ,$ その放物的変換は $\it \Omega_0$ 内のある円板を不変にする $\it .$

特に Ω_0 が単連結ならば , Ω_0 が $H\ddot{o}lder\ domain$ であることと quasi-disk であることとは同値である .

ここでは John domain と Hölder domain のきちんとした定義は与えないが,両者ともある種の regularity を持った領域で,大雑把に言って John domain とは尖った境界を持たない領域であり, Hölder domain とは,単連結の場合には,リーマン写像が Hölder 連続になるような領域のことである.

一般に Hölder domain ならば John domain であるが, 逆は成り立たない. したがって,確かに Theorem 3.1 は Proposition 3.1 の改良になっている.

3.2. Riemann mappings

Gを有限生成 Klein 群で単連結な成分 Ω_0 を持つものとする . 例えば , 擬 Fuchs 群 , b-群はその典型例である . Ω_0 は単連結であるから , 単位円板 Δ からのリーマン写像 $\varphi:\Delta\to\Omega_0$ が存在する . このリーマン写像の函数論的性質と Klein 群 G との関係を考える . 以下は主として論文 [41] の結果である .

単葉函数論 (Koebe の歪曲定理) から , Δ で単射正則関数 φ に対して , ある定数 A>0 が存在して

$$|\varphi'(z)| \le \frac{A}{(1-|z|)^3} \quad (z \in \Delta) \tag{2}$$

が成り立つことが知られている (cf. [36]). これは sharp な評価であるが,一般論である.われわれの場合には, φ の像領域は Klein 群の作用に関する不変性という特殊性がある.よって,原理的には一般論による不等式 (2) よりも良い評価が得られると予想できる.実際,それは正しく,次が成り立つ.

Theorem 3.2. G を有限生成 Klein群で,単連結不変成分 Ω_0 で $\partial\Omega_0$ \subset $\mathbb C$ なるものを持つとする.また, $\varphi:\Delta\to\Omega_0$ を Ω_0 のリーマン写像とする.

1. G が regular b-群であるとき,定数 A>0 が存在して, $\partial \Delta$ の近傍で

$$|\varphi'(z)| \le \frac{A}{(1-|z|)|\log(1-|z|)|^2}$$
 (3)

が成り立つ.

2. G が有限幾何を持つとき,定数 A>0, $\alpha>0$ が存在して, $\partial\Delta$ の近傍で

$$|\varphi'(z)| \le \frac{A}{(1-|z|)|\log(1-|z|)|^{\alpha}}$$
 (4)

が成り立つ.

Remark 3.1. 有界単連結領域 Ω_0 が quasi-disk (= リーマン球面で定義された擬等角写像による単位円板の像) であれば,そのリーマン写像 $\varphi:\Delta\to\Omega_0$ に対して,ある定数 A>0 と $\kappa\in(0,1)$ が存在して,

$$|\varphi'(z)| \le \frac{A}{(1-|z|)^{\kappa}} \tag{5}$$

が成り立つことが知られている (cf. [36]) . Regular b-群は Teichmüller 空間の境界に現れるため,その不变成分は quasi-disk ではない . 実際,(3) の評価は,一般の評価 (2) と quasi-disk の場合の評価 (5) の間にある.

Remark 3.2. Gehring-Pommerenke [13] は Δ 上の単葉関数 φ に対して,それが

$$||S_{\varphi}|| \le 2 \tag{6}$$

を満たすならば (3) が成立することを示している.ここで S_{φ} は φ の Schwartz 微分であり,

$$||S_{\varphi}|| = 4 \sup_{z \in \Delta} (1 - |z|)^2 |S_{\varphi}|$$

である.単連結領域 Ω_0 が有限生成擬 Fuchs 群の不変成分であるとき,そのリーマン写像 $\varphi:\Delta\to\Omega_0$ は Bers 埋め込みによる Teichmüller 空間の点を表わしている.その際, $\|S_{\varphi}\|<2$ であれば,そのような単葉関数 φ は Teichmüller 空間に含まれており,かつ $\|S_{\varphi}\|>2$ を満たす φ で regular b-群に対応するものが存在することも知られている.したがって,Theorem 3.2 の最初の主張は,Gehring-Pommerenke の条件 (6) を満たさず,その主張が成り立つ単葉関数,しかも Fuchs 群の Teichmüller 空間から得られるものが(豊富に)存在することを示している.

上の結果において (3) と (5) の growth order は大きな差がある.これは Remark 3.1 で見たように,regular b-群の不変成分が quasi-disk でないから一般論としても当然である.しかし,更に Klein 群が作用しているという特殊性から,(3) における $|\log(1-|z|)|$ の冪である 2 が,ある意味で critical となっていることを示すことができる.すなわち,

Theorem 3.3. G を有限生成 Klein 群で, $\partial\Omega_0\subset\mathbb{C}$ なる単連結不変成分 Ω_0 を持つとする.このとき,リーマン写像 $\varphi:\Delta\to\Omega_0$ について以下は同値である.

1. ある定数 $\alpha > 0$, A > 0 が存在して,単位円 $\partial \Delta$ の近傍で

$$|\varphi'(z)| \le \frac{A}{(1-|z|)|\log(1-|z|)|^{2+\alpha}}$$
 (7)

が成り立つ.

- 2. Gは擬 Fuchs 群である.
- 3. ある定数 $\kappa \in (0,1)$, A>0 が存在して , $\partial \Delta$ の近傍で

$$|\varphi'(z)| \le \frac{A}{(1-|z|)^{\kappa}} \tag{8}$$

が成り立つ.

3.3. 単連結でない不連続領域

Klein 群Gの成分が単連結でない場合,それは必然的に無限連結領域になる.Gが例 2.22) で与えた Schottky 群,拡張された Schottky 群のときはその典型で,この場合 $\Lambda(G)$ は対数容量正の閉集合である.したがって, $\Omega(G)$ は(無限型)Riemann 面としてある意味で"大きな"理想境界をもっている.この理想境界の性質として次が得られる [40]([38] も参照).

- Theorem 3.4. 1. G が Schottky 群であるとき,その不連続領域 $\Omega(G)$ の Martin 境界は $extreme\ points$ のみからなり,Martin コンパクト化は $\widehat{\mathbb{C}}$ と同相になる.また, $\Omega(G)$ で定義された $\widehat{\mathbb{C}}$ への擬等角写像はその Martin コンパクト化から $\widehat{\mathbb{C}}$ への同相写像に拡張される.
 - 2.~G がカスプを持つ拡張された S chottky 群であるとき, $\Lambda(G)$ の p arabolic fixed p oint には丁度二つの extreme p oints が対応する.

最近の論文[43]では,上記の議論も base にして Cantor 集合の補集合として与えられる Riemann 面のある種の普遍性について論じている.

4. 変形空間の函数論的性質

4.1. Teichmüller 空間

 Γ を商空間 $X:=\mathbb{H}/\Gamma$ が種数 g>1 のコンパクト $\mathrm{Riemann}$ 面になるような Fuchs 群とする. Γ は上半平面 \mathbb{H} と下半平面 \mathbb{L} に作用している. Γ の $\mathrm{Teichm\"uller}$ 空間 $T(\Gamma)$ は Γ -同変な上半平面 \mathbb{H} の自己擬等角写像 φ の $\mathrm{Teichm\"uller}$ 同値類全体 $[\varphi]_T$ として定義される.ここで二つの Γ -同変自己擬等角写像が $\mathrm{Teichm\"uller}$ 同値とはそれらが導く $\mathrm{PSL}(2,\mathbb{R})$ への同型が共役であるときをいう. $T(\Gamma)$ には次の $\mathrm{Teichm\"uller}$ 距離 d_T が定義される.

$$d_T([\varphi_1]_T, [\varphi_2]_T) := \inf_{\varphi_1, \varphi_2} \log K(\varphi_1 \circ \varphi_2^{-1}).$$

ここで, φ_1, φ_2 はその同値類を与える擬等角写像全体を動くものとする.また,K(f) は擬等角写像 f の maximal dilatation である.Teichmüller 距離 d_T は $T(\Gamma)$ において完備になっている.

擬等角写像 $\varphi: \mathbb{H} \to \mathbb{H}$ が Γ -同変は , その $\operatorname{Beltrami}$ 係数 μ_{φ} をもちいて ,

$$\mu_{\varphi}(\gamma(z)) \frac{\overline{\gamma'(z)}}{\gamma'(z)} = \mu_{\varphi}(z) \quad (\gamma \in \Gamma, \text{a. e. in } \mathbb{H})$$
(9)

なる関係式で特徴付けられる.このように与えられた μ_{φ} を下半平面 $\mathbb L$ で恒等的に0と延長して, $\mathbb C$ 上の $\mathrm{Beltrami}$ 係数 $\hat{\mu}_{\varphi}$ を定義する.この $\hat{\mu}_{\varphi}$ は $\mathbb C$ で(9) を満たす.したがって,これを $\mathrm{Beltrami}$ 係数に持つ $\hat{\mathbb C}$ 上の擬等角写像 $w^{\hat{\mu}_{\varphi}}$ は再び Γ -同変となり, Γ から擬Fuchs 群への表現を与える. $f[\varphi]:=w^{\hat{\mu}_{\varphi}}|_{\mathbb L}$ は等角写像であり,その $\mathrm{Schwartz}$ 微分 $S_{f[\varphi]}$ は Γ に関する保形性

$$S_{f[\varphi]} \circ \gamma \cdot (\gamma')^2 = S_{f[\varphi]} \quad (\gamma \in \Gamma)$$

を $\mathbb L$ で持つ.これは $S_{f[\varphi]}$ が $\overline X=\mathbb L/\Gamma$ 上の正則2次微分であることを示している.この procedure は $T(\Gamma)$ で well-defined であることが知られている.つまり, $T(\Gamma)$ からコンパクト $\overline X$ の正則 $\overline X$ の正則 $\overline X$ の正則 $\overline X$ の空間 $\overline X$ ので

になる.実際にはこの写像は埋め込みになっており,これによって $T(\Gamma)$ に自然な複素構造が入り, $T(\Gamma)$ は複素多様体になる.そこで \mathbb{C}^{3g-3} の部分領域としての $T(\Gamma)$ の複素解析的な性質が問題となる.これについて述べる前に正則凸性について簡単に述べる.

複素多様体 M 上の正則函数全体の集合を $\mathcal{O}(M)$ とする . $\mathcal{O}(M)$ の部分集合 \mathcal{O} に対して , M が \mathcal{O} -凸であるとは , M の任意のコンパクト集合 K に対して , その \mathcal{O} -凸包

$$\widehat{K}_{\mathcal{O}} := \{ p \in M \mid |f(p)| \le \max_{q \in K} |f(q)|, \ \forall f \in \mathcal{O} \}$$

がMでコンパクトになるときをいう.この定義より $\mathcal{O}_1\subset\mathcal{O}_2\subset\mathcal{O}(M)$ ならば, \mathcal{O}_1 -凸は \mathcal{O}_2 -凸を意味する.したがって,小さなクラスの正則凸性の方が強い性質になる.Mがその上の正則関数全体 $\mathcal{O}(M)$ に対して $\mathcal{O}(M)$ -凸であるとき,Mは正則凸と呼ばれ,有界正則函数全体の集合について凸であるとき,Mは H^∞ -凸であるという.また,Mが \mathbb{C}^n の領域で, \mathbb{C}^n の多項式全体の集合について凸であるとき,Mは多項式凸であるという.

 $T(\Gamma)$ の複素解析的性質について,以下のことが知られている([6],[8],[22],[25],[39]). Proposition 4.1. 上記の埋め込みによって Teichmüller空間 $T(\Gamma)$ を \mathbb{C}^{3g-3} 内の集合とみなす.このとき

- 1. $T(\Gamma)$ は \mathbb{C}^{3g-3} の有界単連結領域である.
- \mathscr{Q} . $T(\Gamma)$ は \mathbb{C}^{3g-3} で多項式凸である.
- 3. Teichmüller距離 d_T は $T(\Gamma)$ の Kobayashi距離と等しい.
- 4. $T(\Gamma)$ の Carath'eodory距離は完備で,一般に Kobayashi距離より真に小さい.

4.2. Klein 群の変形空間

一般の有限生成 Klein 群 G に対して,G-同変な擬等角写像による変形全体を D(G) と記して,G の変形空間(deformartion space)と呼ぶ.G から $\mathrm{PSL}(2,\mathbb{C})$ への準同型写像の言葉では,

$$D(G) = \{\theta \in \text{Hom}(G, \text{PSL}(2, \mathbb{C})) \mid \theta(\gamma) = w \circ \gamma \circ w^{-1}\}/\sim.$$

となる.ただし,w は擬等角写像で, $\theta_1 \sim \theta_2$ は $\mathrm{PSL}(2,\mathbb{C})$ 共役を意味するものとする.D(G) には,その生成系の表示から自然に複素構造が定義される([21]).また,D(G) には Teichmüller 距離 $d_T^{D(G)}$ が, $\theta_1,\theta_2\in D(G)$ に対し,

$$d_T^{D(G)}(\theta_1, \theta_2) = \inf_{w_1, w_2} \log K(w_2 \circ w_1^{-1})$$

によって定義される.ここに w_1,w_2 はそれぞれ θ_1,θ_2 を与える擬等角写像を動くものとする.Standard な議論で, $d_T^{D(G)}$ はD(G)で完備な距離であることがわかる.

この観点から,コンパクト Riemann 面を表す Fuchs 群の Teichmüller 空間は,上半平面での擬等角変形全体と捉えられる.これは Fuchs 群の $PSL(2,\mathbb{C})$ への表現とみなせるが,擬等角変形のサポートを上半平面に限っているので,Fuchs 群の変形空間としてはいわば「半分だけ」の変形である.これを Klein 群の変形空間として,full にした変形

空間は quasi-Fuchsian space と呼ばれる . Γ を $\mathbb H$ の商空間がコンパクトになる Fuchs 群とする . このとき , quasi-Fuchsian space $\mathcal{QF}(\Gamma)(=D(\Gamma))$ は

 $\mathcal{QF}(\Gamma) = \{w \mid w$ は正規化された $\widehat{\mathbb{C}}$ 上の Γ -同変な擬等角写像 $\}/\sim$

とも表現される.ここで, $w_1 \sim w_2$ は $w_1|_{\mathbb{R}} = w_2|_{\mathbb{R}}$ と思ってもよい. $\mathcal{QF}(\Gamma)$ は自然にGの $\mathrm{PSL}(2,\mathbb{C})$ への表現空間 $\mathrm{Hom}(\Gamma,\mathrm{PSL}(2,\mathbb{C}))$ に埋め込まれる.

Bersの同時一意化定理により, $\mathcal{QF}(\Gamma)$ は Γ の Teichmüller 空間 $T(\Gamma)$ の直積と双正則になる.したがって, $T(\Gamma)$ の解析的性質はある程度 $\mathcal{QF}(\Gamma)$ に伝播するが,さらに次のことが知られている([31]).

Proposition 4.2 (McMullen). $\mathcal{QF}(\Gamma)$ は $Hom(\Gamma, PSL(2,\mathbb{C}))$ で disk convex である. すなわち , 単位円板の閉包 $\overline{\Delta}$ で連続で , Δ で正則である写像 $\Phi:\overline{\Delta}\to Hom(\Gamma, PSL(2,\mathbb{C}))$ が $\Phi(\partial\Delta)\subset\mathcal{QF}(\Gamma)$ であれば , 常に $\Phi(\Delta)\subset\mathcal{QF}(\Gamma)$ となっている .

一般の Klein 群の変形空間で同様の考察を行う. 以下は主として論文 [42] の結果である.

Theorem 4.1. G を成分が全て単連結であるような Klein 群とする . φ を単位円板 Δ 内 のある AB-removable なコンパクト集合 K の外部 $\Delta_K:=\Delta\setminus K$ から $Hom(G,PSL(2,\mathbb{C}))$ への正則写像で,任意の $z\in\Delta_K$ に対して $\varphi(z)(\gamma)$ が parabolic になるのは $\gamma\in G$ が parabolic のときのみとする.このとき, $\varphi(\partial\Delta)\subset D(G)$ であれば, φ は Δ から D(G) への正則写像に拡張できる.

上の定理で, Δ のコンパクト集合 K が AB-removable とは, Δ_K で定義された任意の有界正則函数が Δ まで正則に拡張されるときをいう.例えば,1 次元ハウスドルフ測度が 0 であるコンパクト集合は AB-removable である.

Theorem 4.1の「成分が全て単連結であるような Klein 群」という条件を満たすものは, quasi-Fuchs 群以外にも b-群や蜘蛛の巣群 (web group) と呼ばれる Klein 群がある. 一方で,この条件を満たさない Klein 群においては,次のように状況は全く異なる.

Theorem 4.2. G を有限生成 Klein 群で,単連結でない成分を持つものとする.このとき, $\Delta^*:=\Delta\setminus\{0\}$ で定義され, $\varphi(z)$ がつねに群同型となるような D(G) への正則写像 φ で, Δ まで正則に拡張できないものが存在する.

Theorem 4.2 は Theorem 4.1 の比較においても興味深いが,そこに現れる現象を解析することで,変形空間 D(G) の構造を調べることができる.

Theorem 4.3. G を有限生成 Klein 群とする.このとき,以下が成り立つ.

- 1. D(G) において $Carath\'{e}odory$ 擬距離は距離である.
- 2.~G の成分が全て単連結であれば,Carath'eodory 距離は完備である.特に,D(G)は H^∞ -凸である.
- 3.~Gが単連結でない成分を持てば,D(G)は H^{∞} -凸ではない.特に,Carath'eodory 距離は完備ではない.

また,D(G)のKobayashi距離については,

Theorem 4.4. 有限生成 Klein 群 G の変形空間 D(G) において,Kobayashi 距離は Teichmüller 距離 $d_T^{D(G)}$ と等しい.したがって完備である.また,G が単連結でない成分を持てば,D(G) において Kobayashi 距離と Carath'eodory 距離と Kobayashi 距離は異なる.

参考文献

- [1] W. Abikoff, On Boundaries of Teichmüller spaces and kleinian groups III, Acta Math. 134 (1975), 212–237.
- [2] J. A. Anderson and B. Maskit, On the local connectivity of limit sets of Kleinian groups, Complex Variables 31 (1996), 177–183.
- [3] A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974), 1-12.
- [4] J. Becker and C. Pommerenke, Hölder continuity of conformal mappings and non-quasiconformal Jordan curves, Comment. Math. Helv. 57 (1982), 221–225.
- [5] M. Beck, Y. Jiang, S. Mitra and H. Shiga, Extending holomorphic motions and monodromy, Ann. Acad. Sci. Fenn. **37** (2012), 53–67.
- [6] L. Bers, On boundaries of Teichmüller spaces and on kleinian groups I. Ann. of Math. 91 (1970), 570–600.
- [7] C. J. Earle, On the Carathéodory metric in Teichmüller spaces, in "Discontinuous Groups and Riemann Surfaces, 1973 Maryland Conference", Princeton University Press Princeton, NJ, 99–103, 1974.
- [8] C. J. Earle, I. Kra and S. L. Krushkal', Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc. 343 (1994), 927–948.
- [9] C. J. Earle and A. Marden, On holomorphic families of Riemann surfaces, Contemporary Math. **573** (2012), 67–97.
- [10] C. J. Earle and C. McMullen, Quasiconformal isotopies, in "Holomorphic Functions and Moduli I", Springer-Verlag New York Berlin Heidelberg London Paris Tokyo, 143–154, 1988.
- [11] B. D. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, London Math. Soc. Lecture Notes 111 (1987), 114-253.
- [12] W. J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), 205–218.
- [13] F. W. Gehring and C. Pommerenke, On the Nehari univalence criterion and quasicircles, Comment. Math. Helv. 59 (1984), 226–242.
- [14] R. C. Gunning, Introduction to holomorphic functions of several variables, Volume I, Wadsworth & Brooks/Cole, 1990.
- [15] J. H. Hubbard, Sur les sections analytiques de la courbe universelle de Teichmüller, Mem. Amer. Math. Soc. 166 (1976), 1–137.
- [16] J. H. Hubbard, Teichmüller Theory-Vol. 1, Matrix Editions, 2006.
- [17] Y. Imayoshi and M. Taniguchi, Introduction to Teichmüller Spaces, Springer-Tokyo 1992.
- [18] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Marcel Dekker, 1970.
- [19] I. Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972), 53-69.
- [20] I. Kra, Deformation spaces, in 'A crash course on Kleinian groups', Lecture Notes in Math. 400 Springer-Verlag, Berlin, (1974), 48–70.
- [21] I. Kra and B. Maskit, The deformation space of a Kleinian group, Amer. J. Math. 103 (1981), 1065–1102.
- [22] O. Lehto, Univalent Functions and Teichmüller Spaces, GTM 109, Springer-Verlag 1986.

- [23] R. Mañe, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. 16 (1983), 193-217.
- [24] A. Marden and H. Masur, A foliation of Teichmüller space by twist invariant disks, Math. Scand 36 (1975), 211-228.
- [25] V. Markovic, Caratheodory's Metrics on Teichmueller Spaces and L-shaped pillowcases, to appear in Duke Journal of Mathematics
- [26] B. Maskit, A theorem on planar covering surfaces with applications to 3-manifolds, Ann. of Math. 65 (1965), 341–355.
- [27] B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups: II, Ann. of Math. 91 (1970), 607–639.
- [28] B. Maskit, Self-maps on Kleinian groups, Amer. J. Math. 93 (1971), 840–856.
- [29] K. Matsuzaki and M. Taniguchi, Hyperbolic Manifolds and Kleinian Groups, Clarendon Press Oxford 1998.
- [30] C. T. McMullen, Kleinian groups and John domains, Topology 37 (1998), 485–496.
- [31] C. T. McMullen, Complex earthquakes and Teichmüler theory, J. Amer. Math. Soc. 11 (1998), 283–320.
- [32] C. McMullen, Local connectivity, Kleinian groups, and geodesics on the blowup of the torus, Invent. Math. 146 (2001), 35–91.
- [33] Y. Minsky, On rigidity, limit set, and end invariants of hyperbolic 3-manifolds, J. Amer. Math. Soc. 7 (1994), 539–588.
- [34] S. Mitra and H. Shiga, Extensions of holomorphic motions and holomorphic families of Möbius groups, Osaka J. Math. 47 (2010), 1167-1187.
- [35] H. Miyachi, Moduli of continuity of Cannon-Thurston maps, in "Spaces of Kleinian groups", Lond. Math. Soc. Lec. Notes 329 121–149, 2005.
- [36] C. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag Berlin 1992.
- [37] R. Riley, Holomorphically parameterized families of subgroups of SL(2,C), Mathematika 32 (1985), 248-264.
- [38] S. Segawa, Martin boundaries of Denjoy domains and quasiconformal mappings, J. Math. Kyoto Univ., 30 (1990), 297–316.
- [39] H. Shiga, On analytic and geometric properties of Teichmüller spaces, J. Math. Kyoto Univ. 24 (1984), 441–452.
- [40] H. Shiga, On complex analytic properties of limit sets and Julia sets. Kodai Math. J., 28 (2005), 368–381.
- [41] H. Shiga, Riemann mappings of invariant components of Kleinian groups, J. London Math. Soc., 90 (2009), 716–728.
- [42] H. Shiga, On analytic properties of deformation spaces of Kleinian groups, Trans. Amer. Math. Soc. 368 (2016), 6627–6642.
- [43] H. Shiga, The quasiconformal equivalence of Riemann surfaces and the universal Schottky space, arXiv:1807.01096v1.
- [44] Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111 (1991), 347-355.
- [45] D. Sullivan, Quasiconformal homeomorpisms and dynamics II.: Structural stability implies hyperbolicity for Kleinian groups, Acta Math. **150** (1985), 243–260.
- [46] T. Yamaguchi, Word length and limit sets of Kleinian groups, Kodai Math. J. 28 (2005), 439–451.