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1. Lie superalgebras

Let us denote the field of complex number by C. In this talk all vector spaces,

algebras, et cetera will be over C.
Recall that a Lie algebra is a vector space g that is equipped with a bilinear map

[·, ·] : g× g → g satisfying for all X,Y, Z ∈ g:

(i) [X,Y ] = −[Y,X],

(ii) [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]].

(i) is called skew-symmetry and (ii) Jacobi identity.

A Lie superalgebra is a generalization of a Lie algebra. It is a vector space g which

is Z2-graded, that is, g = g0̄ ⊕ g1̄, equipped with a bilinear map [·, ·] : g × g → g that

is compatible with the Z2-gradation, satisfying

(i) [X,Y ] = −(−1)|X|·|Y |[Y,X],

(ii) [X, [Y, Z]] = [[X,Y ], Z] + (−1)|X|·|Y |[Y, [X,Z]].

Here the notation |X| denotes the Z2-degree of the homogeneous element X ∈ g, that

is, if X ∈ gϵ, then |X| = ϵ, for ϵ = {0̄, 1̄}. For non-homogeneous elements (i) and

(ii) above are extended linearly. Here (i) is called skew-supersymmetry and (ii) super

Jacobi identity. An element X in g0̄ is called even, while an element Y ∈ g1̄ is called

odd.

Remark 1.1. In particular, if g = g0̄ ⊕ g1̄ and g1̄ = 0, then g = g0̄ is just a Lie algebra,

as in this case |X| = |Y | = 0, and skew-supersymmetry and super Jacobi identity of a

Lie superalgebra reduce to skew-symmetry and Jacobi identity for a Lie algebra.

Remark 1.2. By the previous remark we see that in general g0̄ is a Lie algebra. The

super Jacobi identity in the case X and Y are even, Z odd is equivalent to the fact that

the adjoint action of g0̄ on g1̄ is a representation of g0̄. So in general, a Lie superalgebra

g = g0̄ ⊕ g1̄ consists of Lie algebra g0̄ and a g0̄-module g1̄. Additionally, we have a

g0̄-module homomorphism S2(g1̄) → g0̄ that satisfies the condition coming from super

Jacobi identity with X,Y, Z all odd. In fact, a Lie superalgebra is equivalent to such a

data.
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We have the usual notion of subalgebra and ideals of a Lie superalgebra. A Lie

superalgebra is simple, if it has no nontrivial ideals. A module M over a Lie superal-

gebra g is always assumed to be Z2-graded with the action of g compatible with the

respective Z2-gradation of M . A module over a Lie superalgebra is called simple if it

has no nontrivial Z2-graded submodules.

2. Complex simple Lie superalgebras

The first fundamental question is the classification of finite-dimensional simple Lie

superalgebras. Recall that the Cartan-Killing classification of Lie algebras says that the

finite-dimensional complex simple Lie algebras consist precisely of four classical infinite

series denoted by An, Bn, Cn, and Dn, n ≥ 1. In addition, we have five exceptional

simple Lie algebras usually denoted by E6, E7, E8, F4, and G2.

Finite-dimensional complex simple Lie superalgebras were classified by Victor Kac

in 1977. A little bit earlier simple Lie superalgebras that have a non-degenerate Killing

form were classified by the physicists Rittenberg, Scheunert and Nahm.

We shall explain the list of finite-dimensional simple Lie superalgebras below. For

this, let us first recall how the Lie algebras of types An, Bn, Cn, andDn are constructed.

The general linear Lie algebra is the Lie algebra of all linear transformation of a

finite-dimensional vector space V of dimension say n + 1, i.e., Cn+1. If we chose an

ordered basis for Cn+1, then we can realize this Lie algebra as the Lie algebra of all

n+1×n+1 complex matrices with the Lie bracket given by the usual anti-commutator,

i.e., for two n+ 1× n+ 1 matrices X,Y we have [X,Y ] = XY − Y X. Then An is the

subalgebra of this Lie algebra consisting of traceless linear transformations. It is called

the special linear Lie algebra and usually denoted by sl(V ).

To obtain the infinite series of Lie algebras Bn, Cn, and Dn, we take a non-degenerate

bilinear form on a finite-dimensional vector space and look at the Lie subalgebra of the

general linear Lie algebra that preserves such a bilinear form. In the case when the

bilinear form in symmetric we get the series Bn and Dn, while in the case when the

bilinear form is symplectic, we get the series Cn. The orthogonal Lie algebras Bn and

Dn are denoted by so(V ), while the symplectic Lie algebra Cn is denoted by sp(V ),

Now, let us take a finite-dimensional Z2-graded vector space V = V0̄ ⊕ V1̄. Let us

suppose that we have have dimV0̄ = m and dimV1̄ = n. We call V a superspace

of superdimension (m|n). All superspaces of the same superdimension are isomorphic

which we shall simply denote by Cm|n. As V is Z2-graded, the space of endomorphisms

EndC(V ) of all complex linear transformations inherits a natural Z2-gradation. Namely,

even elements are precisely those linear transformations that preserve the degrees of

V , while odd elements are precisely those that interchanges the degrees of V . The

space of linear transformations then has a structure of a Lie superalgebra with bracket

[·, ·] : EndC(V ) × EndC(V ) → EndC(V ) defined as follows: For homogeneous linear



transformations X,Y we let

[X,Y ] := XY − (−1)|X|·|Y |Y X.

This formula is then extended by linearly in the case X,Y ∈ EndC(V ). The Lie

superalgebra obtained this way is called the general linear Lie superalgebra and denoted

by gl(V ) or gl(m|n), as superspaces of the same superdimension give isomorphic Lie

superalgebras.

The correct generalization of trace of a linear transformation on a vector space is

the notion of supertrace of a linear transformation on a superspace. If we take an

ordered homogeneous basis for a superspace V of supedimension (m|n) of the form

{v1, . . . , vm, vm+1, . . . , vm|n} such that the elements v1, . . . , vm are even, and the ele-

ments vm+1, . . . , vm+n are odd, then we can realize any linear transformation X : V →
V as an m+ n×m+ n matrix of the form

X =

(
A B

C D

)
,

where A is an m×m matrix, B an m×n, C an n×m, and D an n×n. The supertrace

is defined to be

strX = trA− trD.

This notion can be seen to be independent of the homogeneous ordered basis chosen,

and so is well-defined.

We can now take the subalgebra of linear transformations that have zero supertrace.

This turns out to be a subalgebra of gl(m|n) and is simple for almost all values of

m ̸= n. In the case when m = n, the scalar multiple of the identity matrix, which

we remark has zero supertrace, is an ideal. Dividing by this ideal we get a simple

Lie algebra for m ≥ 2. This way we obtain the super analogues of the special linear

Lie algebra. These Lie superalgebras accordingly are referred to as special linear Lie

superalgebras and denoted by sl(V ).

Now, we can take a bilinear (·|·) for on the superspace V = V0̄⊕V1̄ that is even. This

means that (V0̄|V1̄) = 0. Suppose we are given such a pairing that is supersymmetric.

This means that it is symmetric when restricted to the even subspace V0̄ and skew-

symmetric when restricted to the odd subspace V1̄. Assume further that it is non-

degenerate. Then necessarily we have dimV1̄ = 2k is even. Similarly to the classical

setting we can consider the subalagebra of gl(V ) that preserves this bilinear form. It

turns out that, just in the classical setting, this subalgebra is simple, and is called the

ortho-symplectic Lie superalgebra and denoted by osp(V ) or osp(dimV0̄| dimV1̄). The

name derives from the fact that the condition on the bilinear form necessarily implies

that its even subalgebra contains a copy of so(V0̄) ⊕ sp(V1̄) as a subalgebra. It turns

out that this is precisely the even subalgebra of the ortho-symplectic Lie superalgebra.

One can of course ask what happens if one takes a non-degenerate bilinear form that



is symplectic on V0̄ and symmetric on V1̄. Such a form is referred to as super skew-

symmetric. It turns out that we get Lie superalgebras that are isomorphic to the

ortho-symplectic Lie superalgebras.

The above are rather straightforward generalization of simple classical Lie algebras

and it gives us examples of simple Lie superalgebras. However, there are two types of

finite-dimensional Lie superalgebras that have no direct analogues in finite-dimensional

Lie algebras. We shall explain those below.

Recall the so-called Cartan type Lie algebras, which are infinite-dimensional Lie

algebras of polynomial vector fields on a finite-dimensional complex vector space. To be

more precise, let C[x1, . . . , xn] be the ring of polynomials in n indeterminates x1, . . . , xn.

Let ∂
∂xi

be the usual partial derivative, i.e., it is the derivation on C[x1, . . . , xn] uniquely
determined by

∂

∂xi
(xj) = δij .

The Lie algebraW (n) of polynomial vector fields on the complex n-dimensional space

is the Lie algebra of derivations from C[x1, . . . , xn] to itself. Explicitly, we have

W (n) = {
n∑

i=1

fi
∂

∂xi
|fi ∈ C[x1, . . . , xn]}.

It is simple, although it is clearly infinite-dimensional. Furthermore, W (n) contains

three series of Lie subalgebras that are all infinite-dimensional. Namely, we have S(n),

the subalgebra of divergence-free vector fields, i.e.,

S(n) = {
n∑

i=1

fi
∂

∂xi
∈ W (n)|

n∑

i=1

∂

∂xi
(fi) = 0}.

Other series are the Hamiltonian and the contact vector fields.

Analogously, we can consider polynomial vector fields on the complex superspace

of superdimension (m|n). We remark that polynomials on Cm|n are C[x1, . . . , xm] ⊗
∧(ξ1, . . . , ξn), where ∧(ξ1, . . . , ξn) stands for the exterior algebra in the indeterminates

ξ1, . . . , ξn. This way we obtain several series of simple Lie superalgebras. They are

in general infinite-dimensional. However, when m = 0, we get finite-dimensional Lie

superalgebras. Indeed, we obtain four series of finite-dimensional simple Lie superalge-

bras this way. They are super analogues of the W -series, S-series and the Hamiltonian

series, in addition to a deformation of the S-series.

The other type of Lie superalgebras with no classical analogues are called the strange

types. To describe them, consider a superspace V = V0̄ ⊕ V1̄ such that dimV0̄ =

dimV1̄ = n. In this case, there exists an involution of V which swaps V0̄ and V1̄.

We can consider the Lie subalgebra of gl(V ) consisting of linear tranformations that

commute with this involution. We get a Lie superalgebra q(n) called the queer Lie

superalgebra. To get a simple Lie superalgebra we first take the derived subalgebra

and then mod out by the scalar linear transformations. The resulting Lie superalgebra



is simple for for n ≥ 3. Another thing that we can do when dimV0̄ = dimV1̄ = n is to

take a symmetric non-degenerate bilinear form (·|·) such that (V0̄|V0̄) = (V1̄|V1̄) = 0.

This means of course that V0̄ is paired with V1̄ non-degenerately. We can take the

subalgebra of gl(V ) that preserves this form, and get a Lie superalgebra called the

periplectic Lie superalgebra and usually denoted by p(n). It turns out that the derived

subalgebra is simple for n ≥ 3.

The above explains all infinite series of finite-dimensional Lie superalgebras over

C. They include all the classical finite-dimensional Lie algebras as well. However,

the list does not include the exceptional Lie algebras. So to have a complete list we

need to include E6, E7, E8, F4, and G2 as well. It turns out that there are three

exceptional Lie superalgebras that are NOT Lie algebras. They are F (3|1), G(3), and

the one-parameter family D(2|1, ζ), where ζ ∈ C\{0,−1}. The existence of these three
exceptional Lie superalgebras were suggested by Freund and Kaplansky.

Let us describe these exceptional Lie superalgebras. As we have mentioned earlier, if

g = g0̄ ⊕ g1̄ is a Lie superalgebra, then g0̄ is a Lie algebra and g1̄ is a g0̄-module under

the adjoint action. For these three exceptional Lie superalgebras we have:

D(2|1, ζ)0̄ ∼= sl2 ⊕ sl2 ⊕ sl2, D(2|1, ζ)1̄ ∼= C2 ⊠ C2 ⊠ C2.

G(3)0̄
∼= G2 ⊕ sl2, G(3)1̄

∼= C7 ⊠ C2.

F (3|1)0̄ ∼= so7 ⊕ sl2, F (3|1)1̄ ∼= spin7 ⊠ C2.

Above C2 denotes the natural sl2-module, C7 denotes the smallest non-trivial module

of the exceptional Lie algebra G2, and spin7 is the (8-dimensional) spin module of the

Lie algebra so7. We mention here that we have isomorphisms:

D(2|1, ζ) ∼= D(2|1, 1
ζ
) ∼= D(2|1,−1− ζ).

Also, D(2|1, 1) ∼= osp(4|2), so that D(2|1, ζ) may be regarded as a deformation of

osp(4|2).

3. Representation Theory of Lie superalgebras

As for Lie algebras, modules over Lie superalgebras are the same as representations

of Lie superalgebras.

3.1. Finite-dimensional module category of simple Lie algebras have been studied early

on. There are two fundamental questions.

(i) Classification of finite-dimensional irreducible modules.

(ii) Computation of the characters for these irreducible modules.

Similar to the classical representation theory of finite-dimensional simple Lie algebras

the simple Lie superalgebras have triangular decomposition. So it makes sense to talk

about highest weights with respect to a Borel subalgebra. It is easy to see that every



finite-dimensional irreducible module over a simple Lie superalgebra is necessarily a

highest weight module. However, certainly not every highest weight irreducible module

is finite-dimensional.

Question (i) asks to determine these highest weights with respect to a Borel subal-

gebra that are highest weights of finite-dimensional irreducible modules. This question

turns out to be not so difficult and it was settled quite early on in Kac’s classical paper

in which he obtained the classification of finite-dimensional simple Lie superalgebras.

Question (ii) is asking to compute the characters of all finite-dimensional irreducible

module over a complex simple Lie superalgebra. We note that, contrary to theory

of semisimple Lie algebras, the finite-dimensional representations of finite-dimensional

simple Lie superalgebras are not completely reducible. Only for the Lie superalgebra

osp(1|2n) are all finite-dimensional representations completely reducible. In any case,

this problem is much harder, and only by now, has the problem been settled completely.

We mention the contributions by Kac (for so-called typical modules), Serganova (for

gl(m|n)), Penkov-Serganova (for q(n)), Gruson-Serganova (for osp), Sergeev, van der

Jeugt, Brundan (new conceptual viewpoint), Germoni and many others. Indeed, only

recently the finite-dimensional irreducible characters for p(n) has been computed by

Balagovic and 9 others (including Serganova), which completes the irreducible character

problem for finite-dimensional modules.

3.2. Computations of the irreducible characters of various Lie superalgebras in the

Bernstein-Gelfand-Gelfand (BGG) category O were done in the last decade or so. Here

the first fundamental work is a conjecture by Brundan in 2003 on the irreducible char-

acters of the Lie superalgebra gl(m|n) in category O. We shall describe this conjecture

in some detail below.

Let gl∞ be the Lie algebra consisting of matrices with rows and columns indexed by

Z with finitely many nonzero entries. Let Uq be the associated quantum group over

Q(q). Let V be its standard module with basis {vi|i ∈ Z} and V∗ be its restricted

dual with normalized dual basis {wj |j ∈ Z}. In the terms of Lusztig V and V∗ are so-

called based modules, i.e., they have standard monomial bases and distinguished bases

that he referred to as canonical and dual canonical bases. (In language of Kashiwara

they are called lower and upper global bases.) Now using the quasi-R-matrix Lusztig

showed that tensor product of based modules are based modules. So in particular, the

Uq-module

Tm|n = V⊗ · · · ⊗ V︸ ︷︷ ︸
m

⊗V∗ ⊗ · · · ⊗ V∗
︸ ︷︷ ︸

n

has standard monomial of the form

Mf := vf(1) ⊗ · · · ⊗ vf(m) ⊗ wf(m+1) ⊗ · · · ⊗ wf(m+n),



where f : {1, · · · ,m+n} → Z, and canonical and dual canonical bases, which we denote

by Tf and Lf . We should mention that formulas for the (dual) canonical bases are in

general complicated.

Let X denote the set of integral weights. For an integral weight λ we associate a

function fλ : {1, . . . ,m + n} → Z by fλ(i) := (λ, δi), where δi are the dual to the

standard basis of the Cartan subalgebra of gl(m|n). This gives a bijection between X

and the set of Z-valued functions on {1, . . . ,m+ n}.
Let K(Om|n) be the split Grothendieck group of the BGG category of integral weight

modules over gl(m|n). Then K(Om|n) has several distinguished bases. The first set of

basis consists of the isomorphism classes of Verma modules {[∆(λ)]|λ ∈ X}. Other

bases are the isomorphism classes of irreducible modules {[L(λ)]|λ ∈ X}. Another set

of bases consists od the isomorphism classes of tilting modules {[T (λ)]|λ ∈ X}. Above
Y (λ) denotes the corresponding module of highest weight λ − ρ, where Y = ∆, T, L

and ρ is the usual half super sum of positive roots of gl(m|n).
The conjecture of Brundan says that the linear isomorphism from Ψ : K(Om|n) ⊗Z

Q → Tm|n
q=1 (evaluated at q = 1) defined by Ψ ([∆(λ)]) := Mfλ sends [T (λ)] to Tfλ and

[L(λ)] to Lfλ .

As the character of Verma modules are easily computed, the problem of computing

the character of L(λ) is reduced to the computation of the transition matrix between

the two bases {Mf} and {Lf}. Actually, this problem is equivalent to the problem of

finding the transition matrix between the bases {Mf} and {Tf}. In any case, there are

algorithms that can compute the coefficients of these matrices, and hence the problem

of computing the irreducible character of gl(m|n) in the BGG category of integral

weight modules is reduced to proving the conjecture. The remarkable thing about the

conjecture is that it would imply that canonical basis of classical Lie algebras plays a

fundamental role in the representation theory of Lie superalgebras. The conjecture was

proved in 2015 by Lam, Wang and myself. The proof uses two important ingredients.

The first is a well-known formulation of the Kazhdan-Lusztig conjecture for type A

Lie algebras via the Schur-Weyl-Jimbo duality. The second important ingredients is

the concept of super duality which is an equivalence of certain parabolic subcategories

between Lie algebra representations and Lie superalgebra representations. Based on

these we were able to reduce the conjecture to the classical Kazhdan-Lusztig conjecture

for semisimple Lie algebras which was proved by independently by Brylinski-Kashiwara

and Bernstein-Beilinson. This solves the irreducible character problem in the BGG

category for the type gl Lie superalgebras.

Recent works by Bao and Wang, and Bao settled that irreducible character prob-

lem for osp-type Lie superalgebras. The idea follows the idea of the gl-type paper of

Cheng-Lam-Wang. There are two ingredients needed, the first is a formulation of the

Kazhdan-Lusztig theory of type BCD Lie algebras in terms of “canonical” bases. The

second ingredient is already present, namely super duality, which appeared in its first

rudimentary form in 2004 in a joint paper with Wang, and Zhang. In more general



forms it appears in joint works with Lam and Wang, and finally in its most general

form in a joint work with Kwon and Wang. The problem is then to find some kind

of standard and canonical bases whose transition matrices are precisely the classical

Kazhdan-Lusztig polynomials of type BD. It turns out that one cannot uses quantum

groups anymore. The solution that Bao and Wang present is to use a quantum defor-

mation of symmetric pairs, called quantum symmetric pairs. They develop a theory

parallel to the theory of canonical basis, which they referred to as ι-canonical bases

and proved that they indeed recover the classical Kazhdan-Lusztig polynomials of type

BD as coefficients of the transition matrices between standard and ι-canonical basis.

With the theory of ι-canonical basis and super duality at their disposal, Bao and Wang

solved the irreducible character problem for type B Lie superalgebras. This work lays

the foundation for much further development of quantum symmetric pair. Type D is

then solved by Bao in a later work. In any case, this completely settles the irreducible

character problem in the BGG category for the type osp Lie superalgebras.

For q(n) the problem has not been completely settled yet at this point. However,

because of its remarkable connection to classical (non-super) Lie theory, we shall briefly

explain what is known.

Here, we shall consider first the full BGG category, that is, including modules with

all possible highest weights, not just integral highest weights. In his thesis Chih-Whi

Chen showed that the computation of the irreducible character of a module of any

highest weight can be reduced to the calculation of three types of highest weights:

(A) congruent s-type weights, where s ̸∈ 1
2Z.

(B) integral weights,

(C) half-integer weights,

Remark 3.1. We remark that the same problem for the Lie superalgebra gl(m|n) is easy
in the sense that no matter what the highest weight is, the problem can be reduced to

the integral weight case. This was proved in a joint work with Mazorchuk and Wang

in 2014. So Brundan’s conjecture settles all cases.

Let us consider the case (A), i.e., the type s-weights with s ̸∈ 1
2Z. It was conjectured

in a joint work with Kwon and Wang that the irreducible characters are given by

the same Kazhdan-Lusztig polynomials as for type gl Lie superalgebras. Thus, the

canonical basis of a certain Fock space over the quantum group of type A Lie algebra

gives the solution. This was indeed proved by Brundan and Davidson in 2017. A special

case was established earlier in a joint work with Chih-Whi Chen.

Let us describe the case (C) first. Studying the linkage in the category O, it is

plausible to conjecture that we can replace the type A quantum group in case (A)

by the type C quantum group and take the Fock space to be the tensor power of

the standard module. This space has standard, canonical and dual canonical bases

and it would natural to conjecture that they would give the irreducible characters in

this case. However, computer calculation by Tsuchioka shows that these canonical



basis lack positivity and so such a conjecture cannot be true. However, if one can

replace Lusztig’s canonical basis by Webster “orthodox” basis, which are related to

some projective modules over certain algebra so that positivity would always hold. It

was conjectured in the same joint work with Kwon and Wang that indeed Webster’s

basis should solve the irreducible character problem in this case. Indeed, this was

proved again by Brundan and Davidson in 2017.

Finally, the case (B) is still open at this moment. In 2004 Brundan conjectured that

the canonical basis on a certain natural module over the type B quantum group should

give the irreducible character in this case. However, Tsuchioka’s computer calculation

shows that the conjecture cannot be true because of lack of positivity of the corre-

sponding canonical basis. Nevertheless, from various viewpoints, it would reasonable

to believe that the quantum group associated to the Lie superalgebra osp(1|2n), with
n → ∞, should play a similar role here as in the case (C).

Now, we shall report on recent progress in the study of irreducible characters for the

exceptional Lie superalgebras D(2|1, ζ) and G(3) in the BGG category O. This is based

on joint works with Weiqiang Wang. The problem for the Lie superalgebra F (3|1) is

still open at this moment.

We shall explain the strategy, as it would be very tedious to give all the formulas and

details here, as in the case of exceptional Lie superalgebras one cannot expect to have

solutions of closed form. Again, computing the irreducible characters in the category

O is equivalent to computing the characters of the tilting modules. We shall continue

to use the notation ∆(λ), L(λ), T (λ) for Verma, irreducible, and tilting modules of

highest weight λ− ρ, respectively. As T (λ) has a ∆-flag we have the following identity

in the Grothendieck group:

[T (λ)] =
∑

µ

bµλ[∆(µ)],

where bµλ ∈ N. So, we need to compute bµλ.

A weight ν is called typical if (ν, β) ̸= 0, for all isotropic roots β. Now a typical

block is equivalent to certain blocks of g0̄-modules by a result of Gorelik. Thus, the

characters of tilting modules of typical highest weights are known to be given by classical

Kazhdan-Lusztig polynomials.

In general let E be a finite-dimensional g-modules and consider E⊗T (ν). In general

E⊗T (ν) is a direct sum of g-modules each lying in different blocks. We can thus project

E⊗T (ν) into a fixed block determined by a fixed central character. Let us denote such

a projection by ET (ν), and we may regard E as a functor, called a translation functor.

It is fairly straightforward to show that ET (ν) is a direct sum of tilting modules.

Remark 3.2. It is very straightforward to compute [ET (ν)] once we know the character

of T (ν). Here we can use Gorelik’s results as an initial step. That is, we start with a

typical highest weight ν for which the character of T (ν) is known by Gorelik and apply

a translation functor to it so that ET (ν) is known.



Now, suppose λ is a weight for which we want to find the character of T (λ). Suppose

we can choose a finite-dimensional module E and a weight ν in such a way that chT (ν)

is known and

[ET (ν)] = [∆(λ)] +
∑

µ<λ

bµ[∆(µ)].

Suppose that we can show that ET (ν) is indecomposable. Then it follows from the

characterization of tilting modules that ET (ν) = T (λ). Thus, we have computed the

character of T (λ), which is what we want. We remark that this is essentially our

strategy to solve the irreducible character problem for D(2|1, ζ) and G(3). There are

two points we wish to emphasize:

• The calculation of [ET (ν)] is straightforward, but since the ∆-flag can be quite

long it is very difficult and tedious to calculate by hand. Here, we are aided by

Mathematica.

• The technically most challenging part is to deal with the issue of indecompos-

ability of ET (ν). Different translation functors result in modules of different

∆-length. Here we also first employ Mathematica to find a translation functor

that would result in a module with an as short a ∆-flag as possible. After that

we then attempt to check indecomposability. Most of the time, it is indecom-

posable, however, in several instances ET (ν) is decompsable. In such cases we

need to resort to different methods case by case.

To conclude we obtain explicit character formulas for all tilting modules for D(2|1, ζ),
for all ζ ∈ C \ {0,−1}, and for all but one single tilting modules for G(3).
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