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1. Motivation
The Cauchy problem

i∂tu+ ∆u = nu

�n = ∆|u|2

for u : Rd+1 → C and n : Rd+1 → R with initial data

(u(0), n(0), ∂tn(0)) = (u0, n0, n1)

arises as a model in plasma physics and was formulated by Zakharov in [23]. Here, ∆
denotes the Laplacian on Rd and � = ∂2

t −∆ is the D’Alembertian on Rd+1. Numerous
contributions have been made towards understanding the wellposedness of this system,
including papers by Sulum–Sulum [22], Ozawa–Tsutsumi [21], Bourgain–Colliander
[14], Ginibre–Tsutsumi–Velo [18], Bejenaru–Herr–Holmer–Tataru [5], and Bejenaru–
Herr [4]. We refer the reader to the papers cited above for further background on
the physical relevance of the above Zakharov system, and for a more comprehensive
overview of the existing literature on this system.

It is natural to consider initial data (u0, n0, n1) in the spaces

Hk(Rd)×H`(Rd)×H`−1(Rd),

where Hk(Rd) denotes the L2-based Sobolev space of order k, and to determine which
pairs (k, `) give rise to local wellposedness. In this context, there is a sensible notion
of criticality for the Zakharov system and, for d ≥ 4, a local wellposedness result was
established in [18] in the whole subcritical range of (k, `). The case where d ≤ 3 is more
problematic, and here we focus on the more recent results obtained in [5] and [4] in
dimensions d = 2 and d = 3, respectively, which successfully closed the full subcritical
regime in these dimensions. Certain geometric estimates were key to the breakthroughs
in [5] and [4] and such estimates will be the focus of this talk.

Very roughly speaking, the approach in [5] and [4] is to employ a frequently used
iteration argument involving Bourgain spaces adapted to the Schrödinger operator
i∂t + ∆ and the half-wave operators i∂t ± |∇|. The crucial multilinear estimates on
which the iteration is based give appropriate control on products of functions which
are localised in frequency and modulation. A particular scenario (transverse high-high
interactions, low modulation) reduces to certain singular convolution estimates which
we describe in the next section. Before that, we note that a similar approach has been
taken in more recent papers by Kinoshita [20] for the Klein–Gordon–Zakharov system
in two dimensions, and Hirayama–Kinoshita [19] for a system of quadratic derivative
nonlinear Schrödinger equations.
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2. Singular convolution estimates
For j = 1, . . . ,m, let Sj ⊂ Rd be a dj-dimensional, compact and sufficiently smooth
submanifold. We parametrise Sj by

Σj : Uj ⊂ Rdj → Rd

and let σj be the associated measure on Sj given by∫
Rd

ϕ dσj =

∫
Uj

ϕ(Σj(y)) dy.

Given appropriate geometric assumptions on the submanifolds Sj, it is natural to seek
a characterisation of exponents for which the singular convolution estimates

‖g1dσ1 ∗ · · · ∗ gmdσm‖Lq(Rd) .
m∏
j=1

‖gj‖Lpj (dσj) (1)

hold. Before moving forward in a somewhat general setup, we consider the following
case in R3 which is relevant to the argument in [5] in the analysis of the Zakharov
system.

Consider S1, S2, S3 as pieces of the coordinate hyperplanes

Sj = {w ∈ [−1, 1]3 : wj = 0}

parametrised by Σj : Q = [−1, 1]2 → Sj with

Σ1(x1, x2) = (0, x1, x2)

Σ2(y1, y2) = (y1, 0, y2)

Σ3(z1, z2) = (z1, z2, 0).

Then

g1dσ1 ∗ g2dσ2 ∗ g3dσ3(0) =

∫
Q×Q×Q

f1(x)f2(y)f3(z) δ(F (x, y, z)) dxdydz

where fj := gj ◦ Σj and F : Q×Q×Q ⊂ R6 → R3 is given by

F (x, y, z) = Σ1(x) + Σ2(y) + Σ3(z)

= (y1 + z1, x1 + z2, x2 + y2)

and therefore

g1dσ1 ∗ g2dσ2 ∗ g3dσ3(0) =

∫
[−1,1]3

f1(x1, x2)f2(y1,−x2)f3(−y1,−x1) dy1dx1dx2.

It now follows from the classical Loomis–Whitney inequality (which is a special case
of the Brascamp–Lieb inequality – see (5) below) that

|g1dσ1 ∗ g2dσ2 ∗ g3dσ3(0)| ≤
3∏
j=1

‖fj‖L2(Q) =
3∏
j=1

‖gj‖L2(dσj). (2)



By duality, this fact has the rather appealing geometric interpretation given by Bejenaru–
Herr–Tataru in [6]. Indeed, it follows from (2) and duality that

‖g1dσ1 ∗ g2dσ2‖L2(dσ3) ≤ ‖g1‖L2(dσ1)‖g2‖L2(dσ2)

which tells us that the convolution of two L2 functions supported each on S1 and S2

has a well-defined restriction, as an L2 function, to the third hyperplane S3.
For the application to the Zakharov system, it was important to establish a nonlin-

ear generalisation of the above fact in the sense that S1, S2 and S3 are general compact
and sufficiently smooth hypersurfaces in R3 which are transversal. Here, by transversal
we mean that if one takes any collection n1, n2 and n3, where nj is a normal vector
to Sj, then {n1, n2, n3} is linearly independent. The extension of (2) to hypersurfaces
which are not necessarily flat is highly non-trivial and, not surprisingly, one is led to
try and establish a nonlinear generalisation of the classical Loomis–Whitney inequality.

3. Brascamp–Lieb inequalities
3.1. The classical case

We begin by introducing the celebrated Brascamp–Lieb inequality. The inequality has
the form ∫

Rd

m∏
j=1

(fj ◦ Lj)cj ≤ C
m∏
j=1

(∫
Rdj

fj

)cj
(3)

where m, d, dj ∈ N, the Lj : Rd → Rdj are surjective linear transformations, 0 ≤ cj ≤ 1
and we consider nonnegative integrable functions fj on Rdj . Clearly, an equivalent
formulation is ∣∣∣∣ ∫

Rd

m∏
j=1

fj ◦ Lj
∣∣∣∣ ≤ C

m∏
j=1

‖fj‖Lpj (Rdj ) (4)

where fj ∈ Lpj(Rdj) and pj = c−1
j ≥ 1 for each j.

As in the [11] we denote by BL(L, c) the smallest constant C for which (3) holds
for all nonnegative input functions fj ∈ L1(Rdj), 1 ≤ j ≤ m, where L = (Lj)

m
j=1 and

c = (cj)
m
j=1. That is,

BL(L, c) = sup

∫
Rd

∏m
j=1(fj ◦ Lj)cj∏m

j=1(
∫
Rdj fj)cj

where the supremum is taken over all f = (fj)
m
j=1 for which 0 <

∫
Rdj fj <∞. Also, we

call (L, c) the Brascamp–Lieb datum, and BL(L, c) the Brascamp–Lieb constant.
Important special cases of Brascamp–Lieb datum include the case where each Bj :

Rd → Rd is the identity transformation and
∑m

j=1 cj = 1, in which case BL(L, c) = 1
is the multilinear Hölder inequality. Also, Young’s convolution inequality in dual form
(see (9) below) clearly fits into the above framework and it was in Brascamp and
Lieb’s famous paper [15] on the sharp constant in Young’s convolution inequality that
the systematic study of (3) originates.

Most relevant to the preceding discussion on the Zakharov system are Loomis–
Whitney-type estimates. The classical version states that∫

Rd

d∏
j=1

(fj ◦ πj)
1

d−1 ≤
d∏
j=1

(∫
Rd−1

fj

) 1
d−1

(5)



for nonnegative integrable functions fj on Rd−1, where πj(x) omits xj; that is

π1(x) = (x2, . . . , xd)

and so on. A “block form” generalisation of this inequality, where the Lj have higher
dimensional kernels, is also valid. If Lj : Rd → Rdj satisfy

m⊕
j=1

kerLj = Rd (6)

and cj = 1
m−1

for all j = 1, . . . ,m, then BL(L, c) = 1.
Naturally, it is desirable to seek necessary and conditions for the finiteness of the

Brascamp–Lieb constant. The first result of this type in full generality was obtained
in [11] (see [1] and [16] in the case of rank-1 maps Lj) where it was shown that

BL(L, c) <∞ ⇔ (7) and (8)

where (7) is the scaling condition

d =
m∑
j=1

cjdj (7)

and (8) is the condition

dim(V ) ≤
m∑
j=1

cj dim(LjV ) for all subspaces V of Rd. (8)

Observe that although (8) must be tested on all subspaces of Rd, it consists of only
finitely many linear inequalities in the cj and therefore gives rise to the finiteness
polytope

Π(L) = {c : BL(L, c) <∞}.

Following [11], we refer to a Brascamp–Lieb datum (L, c) as simple if c lies on the
interior of Π(L). For example, the sharp version of Young’s convolution inequality on
Rd (due to Beckner [3], [2] and Brascamp–Lieb [15]) in dual form is

∫
Rd×Rd

f1(y)c1f2(x− y)c2f3(x)c3dxdy ≤ C
3∏
j=1

(∫
Rd

fj

)cj
(9)

where cj ∈ [0, 1],
∑3

j=1 cj = 2, and the sharp constant is given by

C =

( 3∏
j=1

(1− cj)1−cj

c
cj
j

)d/2
. (10)

In this setup, simple data corresponds to the case where cj ∈ (0, 1) for j = 1, 2, 3, in
which case the sharp constant satisfies C < 1. Moreover, the sharp constant is attained
by appropriate gaussian inputs f .



3.2. The nonlinear case

As mentioned above already, nonlinear generalisations of the Brascamp–Lieb inequality
have naturally arisen in the study of the Zakharov system ([5], [6], [4]), whereby we
wish to relax the assumption that the mappings Lj are linear. That is, we would like
to replace the linear surjections Lj by smooth submersions Bj which are locally defined
in a neighbourhood of a point x0 ∈ Rd, and see whether the inequality remains true
and in what sense. The particular case of nonlinear Loomis–Whitney was first studied
slightly earlier by Bennett, Carbery and Wright [13] and their motivation came from
applications to multilinear restriction theory for the Fourier transform.

3.2.1. Nonlinear Loomis–Whitney-type inequalities

We begin a brief overview of the development of the theory of nonlinear Brascamp–Lieb
inequalities by focussing on the case of Loomis–Whitney-type inequalities; in particular,
nonlinear generalisations of the fact noted above that BL(L, c) = 1 when the linear
surjections Lj : Rd → Rdj satisfy the transversality condition (6) and cj = 1

m−1
for all

j = 1, . . . ,m.

Theorem 3.1 ([13],[6],[7]). Let κ, ν > 0. Suppose that Bj : Rd → Rdj is a C2 sub-
mersion which satisfies ‖Bj‖C2 ≤ κ in a neighbourhood of x0 ∈ Rd. If dB(x0) =
(dBj(x0))mj=1 satisfies (6) and ∣∣∣∣ ? m∧

j=1

?Xj(dBj(x0))

∣∣∣∣ ≥ ν (11)

then there exists a neighbourhood U of x0, depending only on κ, ν and d, and a constant
C, depending only on d, such that∫

U

m∏
j=1

(fj ◦Bj)
cj ≤ C

ν
1

m−1

m∏
j=1

(∫
Rdj

fj

)cj
.

Here, for a given linear map Lj : Rd → Rdj , we are writing Xj(Lj) for the wedge
product of the rows of the dj×dmatrix Lj, and ? denotes the Hodge star operator acting
on the appropriate exterior algebra. Assumption (11) is a (quantitative) transversality
condition, and in the case of the classical Loomis–Whitney data where the Lj are
the mappings πj above with one-dimensional kernels, then condition (11) is equivalent
to a lower bound on the determinant of the d by d matrix with Xj(dBj(x0)) ∈ Rd,
j = 1, . . . , d, as the columns.

In [13], Theorem 3.1 was established in the case where dj = d − 1 for each j =
1, . . . , d, corresponding to the classical Loomis–Whitney inequality, and the proof was
based on the so-called “method of refinements” of Christ [17]. This result was applied
to establish a trilinear restriction inequality in R3 (specifically, the case d = 3 in
Theorem 3.2 below). A few years later, for d = 3, a proof based on “induction-on-
scales” was given in [6] and, moreover, for the application to the Zakharov system in
two dimensions in [5], a more suitable quantitative version was established in [6].

The contribution in [7] was to take the induction-on-scales approach forward and
extend to the case of Brascamp–Lieb data satisfying (6). Moreover, the following
multilinear restriction estimate was deduced. Associated to the parametrisation Σj :
Uj ⊂ Rd−1 → Rd of the (d − 1)-dimensional smooth hypersurface Sj ⊂ Rd is the



extension (or, adjoint restriction) operator Ej given by

Ejg(ξ) =

∫
Uj

g(x)eiΣj(x)·ξ dx.

We shall say that S1, . . . , Sd are transversal if {n1, . . . , nd} is linearly independent,
where nj is any normal to Sj.

Theorem 3.2 ([13],[7]). Let d ≥ 3 and suppose that S1, . . . , Sd are transversal in a
neighbourhood of the origin. Then∥∥∥∥ d∏

j=1

Ejgj

∥∥∥∥
Lq(Rd)

.
d∏
j=1

‖gj‖Lp(Uj) (12)

for all gj supported in a sufficiently small neighbourhood of the origin. Here, (p, q) =
(2d−2

2d−3
, 2).

We note that a much wider range of multilinear restriction estimates of the type
(12) (with more general (p, q)) are known and typically are derived in a slightly weaker
form where the norm on the left-hand side is taken over a large ball BR and the factor
Rε appears on the left-hand side; see, for example, the groundbreaking work of Bennett,
Carbery and Tao [12]. Also, it is not essential to restrict attention to hypersurfaces and
extensions to more general submanifolds are possible; see, for example, [4], [10], [9] and
[24]. We note that the estimates in [4] were stated in the equivalent convolution form
(1) (via Plancherel’s theorem) and were applied to the three-dimensional Zakharov
system.

3.2.2. General nonlinear Brascamp–Lieb inequalities

Very recently, we have significantly extended Theorem 3.1 to include nonlinear versions
of any Brascamp–Lieb inequality with simple data. Moreover, we obtain such an
estimate with a constant which is as tight as it can possibly be.

Theorem 3.3 ([8]). Let ε > 0. If the datum (L, c) is simple, and B is a family of C2

submersions in a neighbourhood of a point x0 ∈ Rd for which dBj(x0) = Lj for each
j = 1, . . . ,m, then there exists a neighbourhood U of x0 for which∫

U

m∏
j=1

(fj ◦Bj)
cj ≤ (1 + ε)BL(L, c)

m∏
j=1

(∫
Rdj

fj

)cj
.

We are hopeful that rather general nonlinear Brascamp–Lieb inequalities of this
type will find applications in the mathematical theory of PDE, possibly in the spirit of
[5], [4], [20], [19]. Looking out more widely, given the vast applications of the classical
form of the Brascamp–Lieb inequality, it seems likely that nonlinear versions will nat-
urally arise in other areas of mathematics. Indeed, one of our primary motivations in
[8] was to answer a question of Cowling, Martini, Müller and Parcet by showing that
the sharp constant in Young’s convolution inequality in a small neighbourhood of the
identity in a general Lie group converges to the sharp constant (10) for the classical
Young’s convolution inequality as the neighbourhood shrinks.

In order to outline our proof of Theorem 3.3, we present an argument due to Keith
Ball, for which the notation

BL(L, c; f) =

∫
Rd

∏m
j=1(fj ◦ Lj)cj∏m

j=1(
∫
Rdj fj)cj



is convenient. Since the integral of a convolution is the product of the integrals of the
constituent functions, we get

BL(L, c; f)BL(L, c;g) =

∫
Rd

(∫
Rd

m∏
j=1

[hxj (Lj(y))]cj dy

)
dx,

whenever
∫
fj =

∫
gj = 1 and where hxj (z) = fj(z)gj(Lj(x) − z). If we write hx =

(hxj )
m
j=1 and f ∗ g = (fj ∗ gj)mj=1, then we obtain

BL(L, c; f)BL(L, c;g) ≤ sup
x

BL(L, c;hx)BL(L, c; f ∗ g).

This we refer to as Ball’s inequality, and from it various bits of useful information may
be extracted. Relevant to the proof of Theorem 3.3 is the fact that if we take g to be
an extremiser, then we obtain

BL(L, c; f) ≤ sup
x

BL(L, c;hx). (13)

If, in addition, we assume that g has compact support, then hxj becomes a localised
version of fj near Lj(x), and therefore (13) contains the information that the functional
f 7→ BL(L, c; f) increases under this localisation. This is the basis for the induction-
on-scales argument that we employ, which is a reasonable strategy since, if we can
carry out a similar argument with Bj rather than Lj, such a localisation process will
effectively “linearise” the Bj. Implementing this strategy creates a number of technical
obstacles (e.g. the above proof of Ball’s inequality appears to heavily rely on the
linearity of the Lj) and these will be outlined in the talk.
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