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Abstract

We associate the prediction and interpolation problem with parameter es-
timation problem for stationary time series. To expand the scope of pre-
diction and interpolation problem for Gaussian stationary time series, we
discuss a concept to minimize the prediction (or interpolation) error, which
is also available for the harmonizable stable process. The concept is readily
transplanted to a disparity between the spectral density and a parametric
model for the parameter estimation. We define an estimator which mini-
mizes the disparity as a minimum contrast estimator. We study the asymp-
totic distributions of minimum contrast estimators in cases of a stationary
process with finite variance innovations and infinite variance innovations.
We also discuss the asymptotic efficiency and the robustness of our estima-
tor based on the disparity.

1. Introduction
The prediction and interpolation problem for the stationary process was introduced
by Kolmogorov (1941a). The problem has been thoroughly investigated by Grenander
and Rosenblatt (1954), Yaglom (1962), Rozanov (1967), just to name a few. By a
work of Urbanik (1967), a formulation of prediction problem from operator theory was
proposed. He assumed that the predictor and the prediction error are independent
and find that this formulation is only valid for the Gaussian stationary process. As
a natural extension instead of independence, a concept to minimize the prediction
error which is evaluated in an adequate normed space was proposed in Hosoya (1982).
This refinement of the definition makes the prediction problem available for a much
richer class of stationary processes, such as harmonizable stable process (See Schilder
(1970), Samorodnitsky and Taqqu (1994)). The interpolation problem for the class is
considered along the same line.

The original form of the Whittle estimator was proposed for parameter estimation
of time series in Whittle (1952). He discussed the error bound derived in Kolmogorov
(1941a) of the prediction problem and suggested using the bound in parameter es-
timation. Later on, a statistical theory for multivariate time series was considered
in Hannan (1970), including ideas of approximate maximum likelihood estimation.
Bloomfield (1973) proposed an exponential model for the spectral estimation, which
contains elements of both parametric and nonparametric procedures. Minimum con-
trast estimations with location disparity and scale disparity were separately discussed
in Taniguchi (1981) and Taniguchi (1987), respectively. We proposed a new dispar-
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ity from the concept to minimize the interpolation error in Suto, Liu and Taniguchi
(2016), and to minimize the prediction and interpolation error in a general norm in
Liu (2017a). In addition, a new method to nonparametrically estimate the spectral
density was proposed in Liu (2017b). A general discussion on the statistical inference
for time series can be found in Taniguchi and Kakizawa (2000). The new disparity
based on the minimization of the prediction and interpolation error in Liu (2017a) re-
lates to the power divergence in Rényi (1961), Csiszár (1975) and Fujisawa and Eguchi
(2008), which was proposed for the density estimation of independent and identically
distributed random variables. The disparity has the robustness to the outliers and
heavy contamination. To precisely understand the estimation procedure by our new
disparity, we first investigate the fundamental properties of the contrast functions. The
new functions are not contained in the class of either location or scale disparities. We
focus on the asymptotic behaviors of the minimum contrast estimator based on the new
disparity when it is applied to the case of the stationary process with finite variance
innovations and infinite variance innovations. Under both situations, the estimator is
shown to be asymptotically consistent. The asymptotic distribution of the estimator
depends on the assumptions of the stochastic process. In particular, the estimator is
robust against the fourth order cumulant when the process is Gaussian. Although it
is shown that the Whittle estimator is asymptotically efficient in the sense that the
family of parametric spectral densities is truly specified, the new class contains robust
members to the randomly missing observations from the stationary process.

In Section 2, we discuss the prediction and interpolation problem for the stationary
process. In Section 3, we introduce the minimum disparity functionals for parameter
estimation of parametric models. In Section 4, the asymptotic behavior of the estima-
tor minimizing the disparity is studied. In Section 5, we discuss the robustness and
asymptotic efficiency case of the estimator based on the disparity.

2. Prediction and interpolation problem
Let us consider a harmonizable symmetric α-stable process {X(t); t ∈ Z}. A stochastic
process is called harmonizable if it has the representation

X(t) =

∫ π

−π
eitλdz(λ), (2.1)

where z(λ) is an independent increment process. Let Λ be Λ = (−π, π]. In gen-
eral, the process {z(λ); λ ∈ Λ} is a complex-valued stable independent increment
process such that the characteristic function φλ1,...,λl(s1, . . . , sl) of the joint distribution
(z(λ1), z(λ2), · · · , z(λl)) is expressed by

φλ1,...,λl(s1, . . . , sl) = exp
{
−

l∑

j=1

∫ π

−π

∣∣∣Re
( l∑

k=j

ske
−iθ
)∣∣∣

α(
F (λj, dθ)− F (λj−1, dθ)

)}
,

for s1, . . . , sl ∈ C. If for any fixed λ ∈ Λ, the random variables z(λ) and z(λ)eiω have
the same distribution for any ω ∈ Λ, then the harmonizable stable process {X(t)} is
stationary and its joint characteristic function is

ϕt1,...,tl(s1, . . . , sl) = exp
{
−
∫ π

−π

∣∣∣
l∑

j=1

sje
itjλ
∣∣∣
α

G(dλ)
}

(2.2)

for a non-negative bounded non-decreasing function G.



As a well-known result of (2.2), the Gaussian process is considered so far. Let α = 2.
It is easy to see that for any l ∈ Z, the joint characteristic function ϕt1,...,tl(s1, . . . , sl) is
that of multivariate normal if s1, . . . , sl ∈ R, and that of multivariate complex normal
if s1, . . . , sl ∈ C. In addition, for any t1, t2 ∈ Z, s ∈ C,

ϕt1(s) = ϕt2(s), (2.3)

and for any t1, t2 ∈ Z such that t1 − t2 = k, there exists a function H such that

H(k) = ϕt1,t2(s1, s2). (2.4)

From equations (2.3) and (2.4), we can see that the Gaussian process is second order
stationary.

First, we focus on the prediction problem of stationary process. Let [X(t)] denote
the linear space spanned by all random variables X(t) (−∞ < t < ∞) and closed with
respect to the mean convergence. Further, let [X(t); t ≤ a] be the subspace of [X(t)]
spanned by all random variables X(t) such that t ≤ a.

Definition 2.1 A stationary process {X(t)} is said to admit a prediction if there exists
a linear operator A0 from [X(t)] onto [X(t); t ≤ 0] such that

(i) A0X = X whenever X ∈ [X(t); t ≤ 0],

(ii) if for every Y ∈ [X(t); t ≤ 0], the random variables X and Y are independent,
then A0X = 0,

(iii) for every X ∈ [X(t)] and Y ∈ [X(t); t ≤ 0], the random variables X − A0X and
Y are independent.

This definition could be regarded as an extension from the original prediction problem
(or interpolation problem) considered in Kolmogorov (1941b) and Kolmogorov (1941a).

A stationary process {X(t)} admitting a prediction is called deterministic if A0X =
X for everyX ∈ [X(t)]. In addition, a stationary process {X(t)} admitting a prediction
is called completely nondeterministic if limt→−∞AtX = 0 for every X ∈ [X(t)].

Theorem 2.2 (Urbanik (1967)) A nontrivial completely nondeterministic process
{X(t)} is Gaussian if and only if for every Y ∈ [X(t)] the process {TtY } admits a
prediction, where Tt denotes a shift preserving the probability distribution such that
X(t) = TtX(0).

Theorem 2.2 shows that the definition of “admit a prediction” is restrictive and only
useful for the Gaussian stationary process. To expand the scope of the prediction
problem, a prediction is instead defined by a concept of the least prediction error,
which is evaluated by an adequate norm.

A one-step ahead predictor of X(0) is defined as a random variable Y ∈ [X(t); t ≤
−1] and the predictor error of the predictor Y is defined as ∥X(0) − Y ∥. An optimal
predictor Z ∈ [X(t); t ≤ −1] is defined as the one which satisfies

∥X(0)− Z∥ ≤ ∥X(0)− Y ∥, ∀Y ∈ [X(t); t ≤ −1]. (2.5)

The optimal predictor defined in (2.5) is not the same as the one defined in Definition
2.1 except for the Gaussian process, since the “independence” described in (ii) and (iii)
is too strong.



To see how the new definition (2.5) works for the harmonizable stable process (2.1),
we have to characterize the intrinsic properties of the harmonizable stable process. Re-
member that the characteristic function of a complex-valued isotropic random variable
which has a symmetric stable distribution with exponent α is expressed as exp

(
−b|s|α

)
.

A natural way to define the length ∥X∥ of the random variable X is to let ∥X∥ = b1/α

for 1 ≤ α ≤ 2; ∥X∥ = b for 0 < α < 1. If two random variables X1 and X2 are
independent in this metric space, then the following equalities hold:

∥X1 +X2∥ = ∥X1∥+ ∥X2∥, if 0 < α < 1,

∥X1 +X2∥α = ∥X1∥α + ∥X2∥α, if 1 ≤ α ≤ 2.

Let Lα be the space of αth power integrable Borel functions with respect to d∥z∥ for
0 < α < 1 and to d∥z∥α for 1 ≤ α ≤ 2. For any function h ∈ Lα, it holds that

∥∥∥
∫ π

−π
h(λ)dz(λ)

∥∥∥ =

⎧
⎪⎨

⎪⎩

∫ π
−π|h(λ)|

αd∥z∥, for 0 < α < 1,

∫ π
−π|h(λ)|

αd(∥z∥α), for 1 ≤ α ≤ 2.

(2.6)

Denote by Lα(S) the completion of the linear hull of the set S in the space Lα. Es-
pecially, Lα(eit; t ∈ Z) is the completion of the linear hull of the set {eit; t ∈ Z}. We
see that the spaces of Lα(eit; t ∈ Z) and {X(t); t ∈ Z} are isometric from (2.6). To
interpret the prediction problem in the frequency domain, we use the notation f(λ) in
general as the spectral density induced by the measure of the space Lα.

Now let us formulate the prediction problem to find the optimal predictor along
the equation (2.5). Let Z1 = {x ∈ Z; x ≤ −1}. From the isometry property above, we
have

∥X(0)− Y ∥ =

∫ π

−π
|1− ψ(λ)|αf(λ)dλ,

where Y ∈ [X(t); t ≤ −1] and ψ(λ) is in the space Lα(S1), which is generated by the
set S1 = {eijλ; j ∈ Z1}. The prediction problem is to solve the following minimization
problem:

min
ψ(λ)∈Lα(S1)

∫ π

−π
|1− ψ(λ)|αf(λ)dλ. (2.7)

When α = 2, the problem (2.7) is surprisingly solved in 1915 by Szegö (1915), in which
the formula is given by

min
φ(λ)∈L2(S1)

∫ π

−π
|1− φ(λ)|2f(λ)dλ = 2π exp

( 1

2π

∫ π

−π
log f(λ)dλ

)
, (2.8)

although the problem is later reformulated in time domain by Kolmogorov in his pa-
pers Kolmogorov (1941a) and Kolmogorov (1941b). A simpler analytic derivation of
the formula (2.8), for example, can be found in Brockwell and Davis (1991). A gen-
eral proof, discussed under the condition that

∫ π
−π log f(λ)dλ > −∞, can be found in

Hannan (1970) and Ash and Gardner (1975).
Now, we discuss the problem (2.7) in general. Under the condition that

∫ π
−π log f(λ)dλ >

−∞, the function (1/α) log f is integrable and thus has the formal Fourier series rep-
resentation:

1

α
log f(λ) ∼

∞∑

j=−∞

aje
ijλ, (2.9)



where

aj =
1

2πα

∫ π

−π
log f(λ)e−ijλdλ.

The key representation of (2.9) makes the linear model of time series popular and
meaningful. The statistical inference for the spectral density is discussed in the next
section. In a similar manner to the usual arguments for the prediction problem in L2,
the following result holds.

Theorem 2.3 (Hosoya (1982)) Let {X(t)} be a stationary harmonizable stable pro-
cess with the spectral density f(λ). If

∫ π
−π log f(λ)dλ > −∞, there exists an optimal

predictor Z ∈ [X(t); t ≤ −1] such that

∥X(0)− Z∥α = 2π exp
( 1

2π

∫ π

−π
log f(λ)dλ

)
.

If
∫ π
−π log f(λ)dλ = −∞, there exists a predictor Z ∈ [X(t); t ≤ −1] such that Z =

X(0) a.e.

Theorem 2.3 shows that the optimal prediction error evaluated by the natural norm for
the harmonizable stable process can be expressed by the spectral density f(λ) induced
by the natural measure of the space Lα. In addition, the αth power of the optimal
prediction error does only depend on a functional expression of the spectral density
f(λ) but not on the index α.

Let us next introduce the interpolation problem along the same line with the pre-
diction problem as a minimization problem. For the interpolation problem, it is first
formulated in Kolmogorov (1941a) for the Gaussian stationary process. A more gen-
eral interpolation problem is considered by Yaglom (1963) and Salehi (1979). However,
from the point of view of the minimization problem, we only need to substitute an in-
teger set S2 for the set S1 in equation (2.7). To be specific, the interpolation problem
is formulated by

min
ψ(λ)∈Lα(S2)

∫ π

−π
|1− ψ(λ)|αf(λ)dλ, (2.10)

where S2 = {eijλ; j ̸= 0}. The minimization problem (2.10) is considered in Weron
(1985) and Miamee and Pourahmadi (1988).

Theorem 2.4 (Miamee and Pourahmadi (1988)) Let {X(t)} be a stationary har-
monizable stable process with the spectral density f(λ). If 0 ≤ f ∈ L1 and f−1/(α−1) ∈
L1, then there exists an optimal interpolator Z ∈ [X(t); t ̸= 0] such that

∥X(0)− Z∥α =
(∫ π

−π
f(λ)−1/(α−1)dλ

)1−α
. (2.11)

In addition, the optimal interpolator ψ(λ) is expressed as

ψ(λ) = 1−
(∫ π

−π
f(λ)−1/(α−1)dλ

)−1

f(λ)−1/(α−1). (2.12)

Theorem 2.4 shows the optimal interpolator ψ(λ) and its interpolation error. The
similarity between the prediction problem and the interpolation problem is that both
optimal errors can be expressed in the functional form of the spectral density. The
difference between them is that the interpolation error depends on the power considered
in the norm for the minimization problem.



Let α = 2. From equations (2.11) and (2.12) in Theorem 2.4, we can see that the
optimal interpolator for the Gaussian process is

ψ(λ) = 1−
(∫ π

−π
f(λ)−1dλ

)−1

f(λ)−1, (2.13)

and its interpolation error is

∥X(0)− Z∥2 =
(∫ π

−π
f(λ)−1dλ

)−1

. (2.14)

As a remark, these results are possible to be extended to the interpolation problem for
multiple missing points. We describe this problem in the following.

Suppose there are p (p < n) missing points X(t), t ∈ Zp = {1, . . . , p}. Let Mp de-
note the closed linear manifold generated by e−ijλ, j ̸∈ Zp. To formulate the problem
evidently, define e(λ) = (e−iλ, . . . , e−ipλ)′ and F (λ) = e(λ)e(λ)∗. To find the opti-
mal interpolator for the missing points is equivalent to seek a response function h(λ)
minimizing

tr

∫ π

−π

(
e(λ)− h(λ)

)
f(λ)

(
e(λ)− h(λ)

)∗
dλ,

where hi(λ) ∈ Mp (i = 1, . . . , p). From the results in L2,
(
e(λ)−h(λ)

)
f(λ) is orthog-

onal to Mp, that is to say,

∫ π

−π

(
e(λ)− h(λ)

)
f(λ)eikλdλ = 0, k ̸∈ Zp.

Therefore, there exists a constant matrix C such that

(
e(λ)− h(λ)

)
f(λ) = Ce(λ).

From the orthogonality in L2 again, the interpolation error matrix Σf , i.e.,

Σf =

∫ π

−π

(
e(λ)− h(λ)

)
f(λ)e(λ)∗dλ = C,

which shows the matrix C real. Also, we have

Σf =

∫ π

−π

(
e(λ)− h(λ)

)
f(λ)

(
e(λ)− h(λ)

)∗
dλ = C

(∫ π

−π
f(λ)−1F (λ) dλ

)
C.

If the process is nondeterministic, then Σf = C is nonsingular. Therefore we obtain

Σf =
(∫ π

−π
f(λ)−1F (λ)dλ

)−1

, (2.15)

and

h(λ) =
(
Ip −

( 1

2π

∫ π

−π
f(λ)−1F (λ) dλ

)−1

f(λ)−1
)
e(λ). (2.16)

Therefore, both equations (2.15) and (2.16) in the interpolation problem for multiple
missing points are extensions of equations (2.13) and (2.14). The disparity based on
(2.15) is discussed in Suto, Liu and Taniguchi (2016).



3. Minimum disparity functionals
In this section, let us consider the disparity to estimate the parameter θ in our para-
metric model fθ, which is motivated by the prediction and interpolation problem of
stationary process. Hereafter we only consider the optimal predictor and interpolator
as discussed in Section 2 and omit “optimal” for brevity.

In the case of the Gaussian stationary process, denote by σ2 the one-step ahead
prediction error, that is,

σ2 = 2π exp
( 1

2π

∫ π

−π
log f(λ)dλ

)
.

Formulating it in time domain, we have

X(t)−
∑

j

ajX(t− j) = ϵ(t), ϵ(t) ∼ i.i.d. N (0, σ2). (3.1)

This is generally called the autoregressive (AR) process in time series analysis. In
practice, it is more natural to use for statistical inference a parametric submodel whose
spectral density is fθ, θ ∈ Θ ⊂ Rd, instead of the direct use of the model (3.1). Still, it
can be regarded as an extrapolation problem, an extension of the prediction problem,
in the sense of the minimization problem (2.7). Consequently, the parameter θ can be
estimated by minimizing the disparity DP , i.e.,

DP (fθ, f) =

∫ π

−π
fθ(λ)

−1f(λ)dλ. (3.2)

The usage of this form (3.2) to estimate the parameter of time series is proposed in
Whittle (1952) and it is well-known as the Whittle estimator.

Next we derive other disparities from the result (2.12) of the interpolation problem
in Lα. Instead of the true spectral density f(λ), it is natural to use a parametric spectral
density fθ for the optimal interpolator ψ(λ). That is, the parametric interpolator ψθ is

ψθ(λ) = 1−
(∫ π

−π
fθ(λ)

−1/(α−1)dλ
)−1

fθ(λ)
−1/(α−1). (3.3)

Plugging (3.3) in equation (2.10), we obtain that
∫ π

−π
|1− ψθ(λ)|αf(λ)dλ =

(∫ π

−π
fθ(λ)

−1/(α−1)dλ
)−α ∫ π

−π
fθ(λ)

−α/(α−1)f(λ)dλ.

For simplicity, let p = −α/(α− 1). Another disparity DI can be defined by

DI(fθ, f) =
(∫ π

−π
fθ(λ)

p+1dλ
)−p/(p+1)

∫ π

−π
fθ(λ)

pf(λ)dλ. (3.4)

To unify the notation of (3.2) and (3.4), we introduce the disparity D as

D(fθ, f) =

∫ π

−π
aθfθ(λ)

pf(λ)dλ, (3.5)

where aθ is expressed as

aθ =

⎧
⎪⎪⎨

⎪⎪⎩

(∫ π
−π f

p+1
θ (λ)dλ

)−p/(p+1)

, if p ̸= −1,

1, if p = −1.



In summary, the parameter θ in the parametric model fθ can be estimated by optimizing
the disparity (3.5).

As a remark, several types of disparities have been proposed in the literature. We
review two main types developed for the parameter estimation of time series in the
following:

• Location disparity DL(fθ, f).

The location disparity DL(fθ, f) is defined as

DL(fθ, f) =

∫ π

−π
Ψ(fθ(λ))

2 − 2Ψ(fθ(λ))Ψ(f(λ))dλ,

where the function Ψ is some appropriate bijective function. Special cases (i)
Ψ(x) = log x; (ii) Ψ(x) = 1 are some choice for practical use.

• Scale disparity DS(fθ, f).

The scale disparity DS(fθ, f) is defined as

DS(fθ, f) =

∫ π

−π
K

(
fθ(λ)

f(λ)

)
dλ,

where K is sufficiently smooth with its minimum at 1. Without loss of generality,
the function K can be replaced by some function K̃ such that

K̃

(
fθ(λ)

f(λ)
− 1

)
= K

(
fθ(λ)

f(λ)

)
.

In this case, the minimizer is 0 for K̃. Examples of K are

(i) K(x) = log x+ 1/x;

(ii) K(x) = − log x+ x;

(iii) K(x) = (log x)2;

(iv) K(x) = (xα − 1)2;

(v) K(x) = x log x− x;

(vi) K(x) = log
(
(1− α) + αx

)
− α log x, α ∈ (0, 1).

Some of these examples are applied to the parameter estimation problem and
others are applied to the discriminant analysis.

It is easy to see that the new disparity (3.5) based on the prediction and interpolation
problem is quite different from the location disparity DL(fθ, f) and the scale disparity
DS(fθ, f). Although some special case of new disparity may be contained in these
two types of disparities, the disparity in general is not contained in the class of either
location or scale disparities. This motivates us to investigate (3.5) further.

We discuss the fundamental properties of the disparity under the following assump-
tions. Denote by F(Θ) the set of spectral densities indexed by parameter θ. Let θ0 be
the true parameter in the parameter space Θ, i.e., f = fθ0 ∈ F(Θ).



Assumption 1

(i) The parameter space Θ is a compact subset of Rd.

(ii) If θ1 ̸= θ2, then fθ1 ̸= fθ2 on a set of positive Lebesgue measure.

(iii) The parametric spectral density fθ(λ) is three times continuously differentiable
with respect to θ and the second derivative ∂2

∂θ∂θT fθ(λ) is continuous in λ.

Theorem 3.1 Under Assumption 1 (i) and (ii), we have the following results:

(i) If p > 0, then θ0 maximizes the disparity D(fθ, f).

(ii) If p < 0, then θ0 minimizes the disparity D(fθ, f).

Theorem 3.1 can be shown by Hölder’s inequality. The maximizer (or minimizer) θ0 in
case (i) (or case (ii)) is found by the equality case and Assumption 1 (ii).

The convexity of the disparity (3.5) can be shown by the analytic approach under
Assumption 1 (iii). To present the result, we need some notation preparation. Denote
by ∂ the partial derivative with respect to θ. For 1 ≤ i ≤ d, let ∂i be the partial
derivative with respect to θi. We simplify the notation for differentiation as follows:

A1(θ) =

∫ π

−π
fθ(λ)

p+1dλ, B1(θ)i = fθ(ω)
p−1∂ifθ(ω),

A2(θ)i =

∫ π

−π
fθ(λ)

p∂ifθ(λ)dλ, B2(θ) = fθ(ω)
p,

A3(θ)ij =

∫ π

−π
fθ(λ)

p−1∂ifθ(λ)∂jfθ(λ)dλ, C1(θ) = − p

p+ 1

(∫ π

−π
fθ(λ)

p+1dλ

)− 2p+1
p+1

.

Theorem 3.2 Under Assumption 1, we have the following results:

(i) if p > 0, then the disparity D(fθ, f) is convex upward with respect to θ.

(ii) if p < 0, then the disparity D(fθ, f) is convex downward with respect to θ.

Theorem 3.2 is shown by noting that

∂i∂jD(fθ, f)
∣∣∣
θ=θ0

= (p+ 1)C1(θ0)
(
A1(θ0)A3(θ0)ij − A2(θ0)iA2(θ0)j

)
.

By the Cauchy-Bunyakovsky inequality, the matrix
(
∂i∂jD(fθ, f)

∣∣∣
θ=θ0

)
is shown to

be positivity definite if p < 0 and negative definite if p > 0. Thus, we obtain the
conclusion.

4. Parameter estimation problem
In this section, we discuss the parameter estimation problem for our parametric model
fθ by optimizing the disparity discussed before. We adopt the case p < 0 in which
the true parameter minimizes the disparity since the discussion for the other case is
parallel. Let the functional T be defined as

D(fT (f), f) = min
θ∈Θ

D(fθ, f), for every f ∈ F(Θ). (4.1)

The analytic properties of the functional T can be found in the following result.



Theorem 4.1 Under Assumption 1, the following results hold.

(i) For every f ∈ F(Θ), there exists a value T (f) ∈ Θ.

(ii) If T (g) is unique and if fn
L2

−→ f , then T (fn) → T (f) as n → ∞.

(iii) T (fθ) = θ for every θ ∈ Θ.

Define h(θ) as h(θ) = D(fθ, f). The assertion (i) is almost obvious but we have to note
that

h(θ) ≤
(∫ π

−π
f(λ)p+1dλ

) 1
p+1 ≤ C,

and by Lebesgue’s dominated convergence theorem, it holds that

|h(θn)− h(θ)| ≤
∣∣∣
∫ π

−π
(aθnf

α
θn(λ)− aθf

α
θ (λ))g(λ)dλ

∣∣∣→ 0

for any convergence sequence {θn ∈ Θ; θn → θ}. The existence of the minimizer follows
from the continuity of h(θ).

To prove the assertion (ii), let hn be hn(θ) = D(fθ, fn). Note that as fn
L2

−→ f , it
holds that

lim
n→∞

sup
θ∈Θ

|hn(θ)− h(θ)| = lim
n→∞

sup
θ∈Θ

∣∣∣
∫ π

−π
aθfθ(λ)

p(fn(λ)− f(λ))dλ
∣∣∣

≤ lim
n→∞

sup
θ∈Θ

∣∣∣
∫ π

−π
a2θfθ(λ)

2pdλ

∫ π

−π
(fn(λ)− f(λ))2dλ

∣∣∣
1/2

≤ C lim
n→∞

sup
θ∈Θ

∣∣∣
∫ π

−π
(fn(λ)− f(λ))2dλ

∣∣∣
1/2

= 0.

The assertion (iii) follows from Theorem 3.1 (ii).
Now we move on to the Hessian matrix of the estimation procedure (4.1). This can

be regarded as a continuation of Theorem 3.2 from the view of estimation.

Theorem 4.2 Under Assumption 1, we have

T (gn) = T (g)−
∫ π

−π
ρ(λ)(fn(λ)− f(λ))dλ

for every spectral density sequence {fn} satisfying fn
L2

−→ f , where

ρ(ω) =
(
A1(θ0)A3(θ0)− A2(θ0)A2(θ0)

T
)−1(

A1(θ0)B1(θ0)− A2(θ0)B2(θ0)
)
.

Theorem 4.2 can be shown by the mean value theorem. Note that there exists a θ∗ ∈ Rd

on the line joining θn and θ0 such that

T (fn)− T (f) =
{
(α + 1)C1(θ)

(
A1(θ)A3(θ)− A2(θ)A2(θ)

T
)∣∣∣∣∣

θ=θ∗

}−1

∫ π

−π

(
A1(θ0)B1(θ0)− A2(θ0)B2(θ0)

)
(fn − f)dλ.



From the fact that

(α + 1)C1(θ)
(
A1(θ)A3(θ)− A2(θ)A2(θ)

T
)∣∣∣∣∣

θ=θ∗

−
(
(α + 1)C1(θ0)(A1(θ0)A3(θ0)− A2(θ0)A2(θ0)

T
)

is bounded by C|T (fn)− T (f)|, the conclusion is obtained.
The essence of the estimation has been considered in Theorems 4.1 and 4.2. Below

we construct the nonparametric estimator for the spectral density f in both cases of a
stochastic process with finite variance innovations and infinite variance innovations.

4.1. Finite variance innovations

We suppose the stationary process has the following representation:

X(t) =
∞∑

j=0

gjϵ(t− j), t ∈ Z,

where {ϵ(t)} is a stationary innovation process with finite fourth moment Eϵ(t)4 < ∞
and satisfies E[ ϵ(t) ] = 0 and Var[ ϵ(t) ] = σ2 with σ2 > 0. We impose the following
regularity conditions.

Assumption 2 For all |z| ≤ 1, there exist C < ∞ and δ > 0 such that

(i)
∑∞

j=0(1 + j2)|gj| ≤ C;

(ii)
∣∣∣
∑∞

j=0 gjz
j
∣∣∣≥ δ;

(iii)
∑∞

t1,t2,t3=−∞|Qϵ(t1, t2, t3)| < ∞, where Qϵ(t1, t2, t3) is the fourth order cumulant
of ϵ(t), ϵ(t+ t1), ϵ(t+ t2) and ϵ(t+ t3).

Assumption 2 (iii) guarantees the existence of a fourth order spectral density

Q̃ϵ(ω1,ω2,ω3) =
( 1

2π

)3 ∞∑

t1,t2,t3=−∞
Qϵ(t1, t2, t3)e

−i(ω1t1+ω2t2+ω3t3).

Denote by (X(1), . . . , X(n)) the observations from the process {X(t)}. Let In,X(ω)
be the periodogram of observations, that is,

In,X(ω) =
1

2πn

∣∣∣
n∑

t=1

X(t)eitω
∣∣∣
2

, −π ≤ ω ≤ π.

Now, under Assumption 1 we can define the estimator θ̂n based on (4.1) as

θ̂n = argmin
θ∈Θ

D(fθ, In,X). (4.2)

Now we state the regularity conditions for the parameter estimation by θ̂n.

Let B(t) denote the σ-field generated by ϵ(s) (−∞ < s ≤ t).



Assumption 3

(i) For each nonnegative integer m and η1 > 0,

Var[E
(
ϵ(t)ϵ(t+m)|B(t− τ)

)
] = O(τ−2−η1)

uniformly in t.

(ii) For any η2 > 0,

E|E{ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)|B(t1 − τ)}− E
(
ϵ(t1)ϵ(t2)ϵ(t3)ϵ(t4)

)
| = O(τ−1−η2),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4.

(iii) For any η3 > 0 and for any fixed integer L ≥ 0, there exists Bη3 > 0 such that

E[T (n, s)2 {T (n, s) > Bη3}] < η3

uniformly in n and s, where

T (n, s) =
[ 1
n

L∑

r=0

{ n∑

t=1

ϵ(t+ s)ϵ(t+ s+ r)− σ2δ(0, r)
}2]1/2

.

Here, δ(s, t) is the Kronecker delta.

Assumption 3 is a sufficient condition under which the estimator (4.2) is asymptotically
normal. The details for Assumption 3 can be found in Hosoya and Taniguchi (1982).

Theorem 4.3 Suppose Assumptions 1–3 hold. As for the spectral density f ∈ F(Θ),
the estimator θ̂n defined by (4.2) has the following asymptotic properties.

(i) θ̂n converges to θ0 in probability;

(ii) The distribution of
√
n(θ̂n−θ0) is asymptotically normal with mean 0 and covari-

ance matrix H(θ0)−1V (θ0)H(θ0)−1, where

H(θ0) =
(∫ π

−π
fθ0(ω)

p∂fθ0(ω)dω
)(∫ π

−π
fθ0(ω)

p∂fθ0(ω)dω
)T

−
∫ π

−π
fθ0(ω)

p+1dω

∫ π

−π
fθ0(ω)

p−1
(
∂fθ0(ω)

)(
∂fθ0(ω)

)T
dω,

V (θ0) = 4π

∫ π

−π

(
fθ0(ω)

p∂fθ0(ω)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω)
p+1

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)

(
fθ0(ω)

p∂fθ0(ω)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω)
p+1

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)T

dω

+ 2π

∫∫ π

−π

(
fθ0(ω1)

p−1∂fθ0(ω1)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω1)
p

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)

(
fθ0(ω2)

p−1∂fθ0(ω2)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω2)
p

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)T

Q̃X(−ω1,ω2,−ω2)dω1dω2. (4.3)

Here, Q̃X(ω1,ω2,ω3) = A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3)Q̃ϵ(ω1,ω2,ω3) and
A(ω) =

∑∞
j=0 gj exp(ijω).



The asymptotic variance (4.3) of the estimator θ̂n seems extremely complex. Sometimes
we are not interested in all disparities (3.5) for different p but some. Especially, when
p = 1, the disparity corresponds to the prediction error.

Let us give the result for the Gaussian stationary process under the special case
p = −1. From Theorem 2.3, there exists a real constant σ̃2 > 0 such that

σ̃2 = 2π exp
( 1

2π

∫ π

−π
log fθ(λ)dλ

)
.

Thus we have the following result that if the parametric model fθ is innovation-free,
i.e., independent of σ̃2, then

∫ π

−π
fθ(λ)

−1∂fθ(λ)dλ = ∂

∫ π

−π
log fθ(λ)dλ = 0. (4.4)

When p = −1, by (4.4), we have

H(θ0) = 2π

∫ π

−π
fθ0(ω)

−2
(
∂fθ0(ω)

)(
∂fθ0(ω)

)T
dω.

Note that Q̃X(−ω1,ω2,−ω2) = 0 for the Gaussian process. By (4.4) again, we have

V (θ0) = 16π3

∫ π

−π
fθ0(ω)

−2
(
∂fθ0(ω)

)(
∂fθ0(ω)

)T
dω.

Therefore, the asymptotic covariance matrix for
√
n(θ̂n − θ0) is

H(θ0)
−1V (θ0)H(θ0)

−1 = 4π
(∫ π

−π
fθ0(ω)

−2
(
∂fθ0(ω)

)(
∂fθ0(ω)

)T
dω
)−1

. (4.5)

Generally, the inverse of the right hand side of (4.5) is called the Gaussian Fisher
information matrix in time series analysis. Let us denote it by F(θ0), i.e.,

F(θ0) =
1

4π

∫ π

−π
f−2
θ0

(λ)∂fθ0(λ)∂fθ0(λ)
Tdλ. (4.6)

An estimator θ̂n is said to be Gaussian asymptotically efficient if
√
n(θ̂n − θ0)

L−→
N (0,F(θ0)−1).

4.2. Infinite variance innovations

Next we consider the linear processes with infinite variance innovations. Suppose
{X(t); t ∈ Z} is a stationary process

X(t) =
∞∑

j=0

gjϵ(t− j), t ∈ Z,

where i.i.d. symmetric innovation process {ϵ(t)} satisfy the following assumptions.

Assumption 4 For some k > 0, δ = 1∧k and positive sequence an satisfying an ↑ ∞,
the coefficient gj and the innovation process {ϵ(t)} have the following properties:

(i)
∑∞

j=0|j||gj|δ < ∞;



(ii) E|ϵ(t)|k < ∞;

(iii) as n → ∞, n/a2δn → 0;

(iv) limx→0 lim supn→∞ P
(
a−2
n

∑n
t=1 ϵ(t)

2 ≤ x
)
= 0.

(v) For some 0 < α < 2, the distribution of ϵ(t) is in the domain of normal attraction
of a symmetric α-stable random variable Y.

For Assumption 4, note that the positive sequence an can be specified from (v) by
choosing an = n1/α for n ≥ 1. (See Feller (1968), Bingham et al. (1987).)

An issue concerning the infinite variance innovations is the periodogram In,X(ω) is
not well-defined in this case. For this type of stationary process, the self-normalized pe-
riodogram Ĩn,X(ω) = In,X(ω)/

∑n
t=1 X(t)2 is substituted for the periodogram In,X(ω).

Let us define the power transfer function f(ω) by

f(ω) =
∣∣∣

∞∑

j=0

gje
ijω
∣∣∣
2

, ω ∈ [−π, π].

Again it is possible to formulate the approach to estimate parameter by minimizing the
disparity (4.1). That is, we fit a parametric model fθ to the self-normalized periodogram
Ĩn,X(ω):

θ̂n = argmin
θ∈Θ

D(fθ, Ĩn,X). (4.7)

For the case of infinite variance innovations, we introduce the scale constant Cα ap-
pearing in the asymptotic distribution, i.e.,

Cα =

{
1−α

Γ(2−α) cos(πα/2) , if α ̸= 1,
2
π , if α = 1.

Theorem 4.4 Suppose Assumptions 1, 2 and 4 hold. As for the power transfer func-
tion f ∈ F(Θ), the estimator θ̂n defined by (4.7) has the following asymptotic properties.

(i) θ̂n converges to θ0 in probability;

(ii) It holds that

( n

log n

)1/α
(θ̂n − θ0) → 4πH−1(θ0)

∞∑

k=1

Yk

Y0
Vk(θ0)

in law, where H(θ0) is the same as in Theorem 4.3,

Vk(θ0) =
(∫ π

−π
fθ0(ω)

p∂fθ0(ω)dω
)(∫ π

−π
fθ0(ω)

p+1 cos(kω)dω
)

−
(∫ π

−π
fθ0(ω)

p+1dω
)(∫ π

−π
fθ0(ω)

p∂fθ0(ω) cos(kω)dω
)
,

and {Yk}k=0,1,..., are mutually independent random variables. Y0 is α/2-stable with

scale C−2/α
α/2 and Yk (k ≥ 1) is α-stable with scale C−1/α

α .

Theorem 4.4 shows the asymptotic distribution of the estimator θ̂n. This is quite
different from that in the case of finite variance innovation case.



5. Robustness and Efficiency
In this section, we discuss the robustness and asymptotic efficiency of the estimator θ̂n
in (4.2). Especially, the estimator θ̂n is robust in their asymptotic distribution in the
sense that it does not depend on the fourth cumulant under some suitable conditions;
and robust from its intrinsic feature against randomly missing observations from time
series. On the other hand, we discuss the asymptotic efficient estimator in the new
class of disparities and illustrate it by some examples.

5.1. Robustness

The estimator θ̂n is said to be robust against the fourth cumulant if the asymptotic
variance of θ̂n does not depend on Q̃X(−ω1,ω2,−ω2). The estimator θ̂n is robust against
the fourth cumulant under the following assumption.

Assumption 5 For the innovation process {ϵ(t)}, suppose the fourth order cumulant
cum

(
ϵ(t1), ϵ(t2), ϵ(t3), ϵ(t4)

)
satisfies

cum
(
ϵ(t1), ϵ(t2), ϵ(t3), ϵ(t4)

)
=

{
κ4 if t1 = t2 = t3 = t4,

0 otherwise.

If Assumption 5 holds, the fourth order spectral density Q̃X(ω1,ω2,ω3) of {X(t)} be-
comes

Q̃X(ω1,ω2,ω3) = (2π)−3κ4A(ω1)A(ω2)A(ω3)A(−ω1 − ω2 − ω3). (5.1)

Thus, we obtain the following theorem.

Theorem 5.1 Suppose Assumptions 1, 2, 3 and 5 hold. As for the spectral density
f ∈ F(Θ), The distribution of

√
n(θ̂n − θ0) is asymptotically Gaussian with mean 0

and variance H(θ0)−1Ṽ (θ0)H(θ0)−1, where

Ṽ (θ0) = 4π

∫ π

−π

(
fθ0(ω)

p∂fθ0(ω)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω)
p+1

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)

(
fθ0(ω)

p∂fθ0(ω)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω)
p+1

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)T

dω. (5.2)

Assumptions 5 seems strong. However, for example, the Gaussian process always
satisfies Assumption 5. In practice, modeling a process is usually up to second order.
Making an assumption on simultaneous fourth cumulants covers a sufficiently large
family of models.

Let us compare equation (5.2) with equation (4.3) in Theorem 4.3. The term with
the fourth order spectral density Q̃X(ω1,ω2,ω3) of {X(t)} vanishes. This fact is well
known for the case p = −1, i.e., the Whittle likelihood estimator is robust against the
fourth cumulant. We have shown that the robustness against the fourth cumulant also
holds for any p ∈ R \ {0}.

Now let us explain how to show Theorem 5.1. By the expression (5.1), we have

Q̃X(−ω1,ω2,−ω2) =
κ4

2πσ4

(σ2

2π

)2
A(−ω1)A(ω2)A(−ω2)A(ω1) =

κ4
2πσ4

fθ0(ω1)fθ0(ω2).

(5.3)



By (5.3), the second term in (4.3) can be evaluated by

2π

∫∫ π

−π

(
fθ0(ω1)

p−1∂fθ0(ω1)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω1)
p

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)

(
fθ0(ω2)

p−1∂fθ0(ω2)

∫ π

−π
fθ0(λ)

p+1dλ− fθ0(ω2)
p

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)T

Q̃X(−ω1,ω2,−ω2)dω1dω2

=
κ4
σ4

(∫ π

−π
fθ0(ω1)

p∂fθ0(ω1)dω1

∫ π

−π
fθ0(λ)

p+1dλ−
∫ π

−π
fθ0(ω1)

p+1dω1

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)

(∫ π

−π
fθ0(ω2)

p∂fθ0(ω2)dω2

∫ π

−π
fθ0(λ)

p+1dλ−
∫ π

−π
fθ0(ω2)

p+1dω2

∫ π

−π
fθ0(λ)

p∂fθ0(λ)dλ
)T

= Od,

where Od denotes the d× d zero matrix. This shows why the second term in equation
(4.3) vanishes when we take the prediction and interpolation error as a disparity.

Not only robust against the fourth cumulant, the estimation by the disparity (4.2) is
also robust against randomly missing observations. This property can be illustrated by
some numerical simulations. For conceptual understanding, let {Y (t)} be an amplitude
modulated series, that is,

Y (t) = X(t)Z(t),

where

Z(t) =

{
1, Y (t) is observed

0, otherwise.

If we define P (Z(t) = 1) = q and P (Z(t) = 0) = 1 − q, then the spectral density fY
for the series {Y (t)} is represented by

fY (ω) = q2fX(ω) + q

∫ π

−π
a(ω − α)fX(α)dα, (5.4)

where a(ω) = (2π)−1
∑

r are
irω with ar = q−1Cov(Z(t), Z(t+ r)). The spectral density

fY from equation (5.4) can be considered as the original spectral density fX heavily
contaminated by a missing spectral density

∫ π
−π a(ω − α)fX(α)dα.

5.2. Asymptotic efficiency

As shown in (4.6), the variance of the estimator θ̂n minimizing prediction error is
asymptotically F(θ0)−1. Actually, it is well known in time series analysis that the
Fisher information matrix for the Gaussian process is

F(θ0) =
1

4π

∫ π

−π
f−2
θ0

(λ)∂fθ0(λ)∂fθ0(λ)
Tdλ,

which can be derived from the approximate maximum likelihood estimation. When the
asymptotic variance of the estimator θ̂n attaining the Cramer-Rao lower bound, that
is, the inverse matrix of Fisher information matrix F(θ)−1, the estimator θ̂n is called
asymptotically Gaussian efficient. We compare the asymptotic variance the estimator
θ̂n based on the disparity (4.5) in the following. In addition an analytic lower bound
for the estimator θ̂n is found in the following theorem.



Theorem 5.2 Suppose Assumptions 1, 2, 3 and 5 hold. We obtain the following
inequality in the matrix sense

H(θ0)
−1Ṽ (θ0)H(θ0)

−1 ≥ F(θ0)
−1. (5.5)

The equality holds if p = −1 or the spectral density f(ω) is a constant function.

The inequality (5.5) in Theorem 5.2 can be shown by the Cauchy-Bunyakovsky in-
equality. The equality holds if and only if there exists a constant C such that

(∫ π

−π
fθ(λ)

p+1dλ
)
fθ(ω)

p+1∂fθ(ω)

−
(∫ π

−π
fθ(λ)

p∂fθ(λ)dλ
)
fθ(ω)

p+2 − C∂fθ(ω)

∣∣∣∣∣
θ=θ0

= 0. (5.6)

If p = −1, then the left hand side of (5.6) is

(∫ π

−π
fθ(λ)

p+1dλ
)
fθ(ω)

p+1∂fθ(ω)−
(∫ π

−π
fθ(λ)

p∂fθ(λ)dλ
)
fθ(ω)

p+2 − C∂fθ(ω)

∣∣∣∣∣
θ=θ0

= 2π∂fθ(ω)−
(∫ π

−π
fθ(λ)

−1∂fθ(λ)dλ
)
fθ(ω)− C∂fθ(ω)

∣∣∣∣∣
θ=θ0

.

From equation (4.4), we see that if we take C = 2π, then the equation (5.6) holds.
When p ̸= −1, then (5.6) does not hold in general. Still we can see that (5.6) holds if
the spectral density is a constant function independent of ω.

In the following, let us give close this section with two examples for Theorem
5.2. Especially, we compare the asymptotic variance of the estimator θ̂n based on the
disparity (4.5) when p = −2 with that when p = −1.

Example 1 Let {X(t)} be generated by the AR(1) model as follows.

X(t) = θX(t− 1) + ϵ(t), |θ| < 1, ϵ(t) ∼ i.i.d.N (0, σ2).

The spectral density fθ(ω) of {X(t)} is expressed as

fθ(ω) =
σ2

2π

1

|1− θeiω|2 .

From Theorem 4.3, let p = −2 and we obtain

H(θ) = 2 · (2π)4(1− θ2), V (θ) = 4 · (2π)8(1− θ2)2.

Thus, the asymptotic variance when p = −2 is

H(θ)−1V (θ)H(θ)−1 = 1. (5.7)

On the other hand, by (4.6), it holds that

F(θ) =
1

1− θ2
. (5.8)



Then comparing the equation (5.7) with (5.8), we have

1 = H(θ)−1V (θ)H(θ)−1 ≥ F(θ)−1 = 1− θ2. (5.9)

From (5.9) we can see that θ̂n is not asymptotically efficient except for θ = 0.

Example 2 Let {X(t)} be generated by the MA(1) model as follows.

X(t) = ϵ(t) + θ ϵ(t− 1), |θ| < 1, ϵt ∼ i.i.d.N (0, σ2).

The spectral density fθ(ω) of {Xt} is

fθ(ω) =
σ2

2π
|1 + θeiω|2.

From Theorem 4.3, let p = −2 and we obtain

H(θ)−1V (θ)H(θ)−1 = 1− θ4 = (1− θ2)(1 + θ2). (5.10)

On the other hand, by (4.6), it holds that

F(θ) =
1

1− θ2
. (5.11)

Then comparing the equation (5.10) with (5.11), we have

(1− θ2)(1 + θ2) = H(θ)−1V (θ)H(θ)−1 ≥ F(θ)−1 = 1− θ2.

Therefore θ̂n is not asymptotically efficient except for θ = 0.
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