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Abstract

In this talk, we overview the recent developments of deep learning theory
especially from the point of view of generalization and representation abil-
ity, and give some generalization error analysis from kernel methods and
its applications to the model determination analysis. Along with rapid de-
velopment of deep learning applications, its theoretical analysis has been
developed extensively these days. In the first part, we overview the recent
progress of deep learning theories. Second, we show what kind of quantity
determines the generalization error. To do so, we define an intrinsic dimen-
sionality from a kernel method perspective. We also show its application
to model compression. Finally, we analyze representation ability of deep
learning using wavelet analyses.

1. Introduction

This article gives an overview of our work about model compression and generalization.
Along with the rapid development of the deep learning techniques, its network struc-
ture is getting extensively complicated. For example, SegNet [3] has skip connections,
ResNet [12] and its variants [15, 5] also possess several skip connections. In addition to
the model structure, the model size is getting larger, which prevents us to implement
deep neural networks in edge-computing devices for such applications as smart phone
services, autonomous vehicle driving and drone control.

To overcome this difficulty, model compression techniques have been studied exten-
sively in the literature. One approach is pruning by an explicit regularization, such as
ℓ1 and ℓ2 penalization during training [18, 29, 26, 13]. A similar effect can be realized
by an implicit randomized regularization, such as DropConnect [25], which randomly
removes connections during the training phase. The factorization method performs a
matrix/tensor decomposition of the weight matrices to reduce the number of parame-
ters [8, 9]. Information redundancy can be reduced by a quantization technique that
expresses the network by smaller bit variable type or hash tables [4, 11]. More closely
related ones are ThiNet [20] and Net-Trim [1] which prune the network weight so that
the behaviors of the internal layers of the pruned network are as close as possible to
those of the original network. [7] is quite close to ours, but it’s theoretical support is
not satisfactory. In particular, the suggested way of the best subset selection is just
a random choice. [27] proposed parameter sharing technique to reduce redundant pa-
rameters based on similarity between the weights. A big issue in the literature is that
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only few of them (e.g., Net-Trim [1]) are supported by statistical learning theory. In
particular, it has been unclear what kind of quantity controls the compression ability.
Another big issue is that the above mentioned methods can not be trivially applied to
the recently developed networks with complicated structures such as skip connections
like ResNet and SegNet.

In this article, we develop a new simple network compression method that is appli-
cable to networks with complicated structures, and give theoretical support to explain
what quantity controls the compression ability. The theoretical analysis is applicable
not only to our method but also to the existing methods. Almost all of the existing
methods try to find a smaller network structure that approximates only the “output”
from each layer as well as possible. In contrast, our method also deals with the “input”
to each layer. The information of the input is exploited as a covariance matrix, and re-
dundant nodes are discarded on the basis of that information. It can be applied even if
the “outputs” are split into several branches. Moreover, by combining the information
of both input and output, it achieves better accuracy.

We also develop a theoretical analysis to characterize the compression error by
utilizing the notion of degree of freedom. The degree of freedom represents a kind of
intrinsic dimensionality of the model. This quantity is determined by the eigenvalues of
the covariance matrix calculated in each layer. Usually, we observe that the eigenvalue
drops rapidly, which leads to low degree of freedom. Because of this, we can compress
the network effectively even though only the input information is used. Behind the
theory, there is essentially a connection to the kernel quadrature rule [2]. In addition to
the model compression ability analysis, we also develop a generalization error analysis.
Finally, we conduct extensive numerical experiments to show the superiority of our
method and give experimental verification of our theory.

2. Model compression problem and its algorithm

Suppose that the training data Dtr = {(xi, yi)}ntr
i=1 are observed, where xi ∈ Rdx and yi

could be a real number for regression (yi ∈ R) or a binary label for binary classification
(yi ∈ {±1}). The distribution of X is denoted by PX . The training data are indepen-
dently identically distributed. To train the appropriate relationship between x and y,
we construct a deep neural network model as f(x) = (W (L)η(·)+b(L))◦· · ·◦(W (1)x+b(1)),
where W (ℓ) ∈ Rmℓ+1×mℓ , b(ℓ) ∈ Rmℓ+1 (ℓ = 1, . . . , L), and η : R → R is an activation
function (here, the activation function is applied in an element-wise manner; for a vec-
tor x ∈ Rd, η(x) = (η(x1), . . . , η(xd))

⊤). Furthermore, mℓ is the width of the ℓ-th layer

such thatmL+1 = 1 (output) andm1 = dx (input). Let f̂ be a trained network obtained
from a training data Dtr = {(xi, yi)}ntr

i=1. Accordingly, its parameters are denoted by

(Ŵ (ℓ), b̂(ℓ))Lℓ=1, i.e., f̂(x) = (Ŵ (L)η(·)+ b̂(L))◦· · ·◦(Ŵ (1)x+ b̂(1)), and the output of its in-

ternal layer (before activation) is denoted by F̂ℓ(x) = (Ŵ (ℓ)η(·)+b̂(ℓ))◦· · ·◦(Ŵ (1)x+b̂(1)).

Here, we do not specify how to train the network f̂ . Any learning method for training f̂
is valid for the following argument to be true. It might be the empirical risk minimizer,
the Bayes estimator, or another estimator. We want to compress the trained network
f̂ to another smaller network f ♯ having widths (m♯

ℓ)
L
ℓ=1 which are as small as possible.

2.1. New model compression algorithm

To compress the trained network f̂ , we propose a simple strategy called Spectral-
Pruning. The method works in a layer-wise manner. The main idea of the method is
to find the most informative subset of the nodes where the amount of information is



measured by how the selected nodes can explain the other nodes in the layer. If some
nodes are heavily correlated to each other, then only one of them should be selected.
The information redundancy can be computed by solving a simple regression problem,
and requires only a covariance matrix. We do not need to solve some specific nonlinear
optimization problem as in [18, 29, 26, 1]. Our method can be executed by only using
the input to the layer. We call such an approach input aware one. On the other hand, it
can also make use of the output from the layer as in the most existing methods. We call
such approaches output aware ones. Another important characteristics of our method
is to incorporate the distribution of the data while some existing pruning techniques
try to approximate the parameter itself and is independent from the data distribution.

2.2. Algorithm description

Let ϕ(x) = η(F̂ℓ−1(x)) ∈ Rmℓ be the input to the ℓ-th layer, and let ϕJ(x) =
(ϕj(x))j∈J ∈ R|J | be a subvector of ϕ(x) corresponding to an index set J ∈ [mℓ]

|J |

where [m] := {1, . . . ,m}. Basically, the strategy is to recover ϕ(x) from ϕJ(x) as
accurately as possible. To do so, we solve the following optimization problem:

ÂJ = argmin
A∈Rmℓ×|J|

Ê[∥ϕ− AϕJ∥2] + ∥A∥2w, (1)

where Ê[·] is the expectation with respect to the empirical distribution (Ê[f ] =
1
n

∑ntr

i=1 f(xi)) and ∥A∥2w = Tr[AIwA
⊤] for a regularization parameter w ∈ R|J |

+ and

Iw = diag (w). The optimal solution ÂJ can be explicitly expressed by utilizing the

(non-centered) covariance matrix in the ℓ-th layer of the trained network f̂ which is

defined as Σ̂ := Σ̂(ℓ) =
1
n

∑n
i=1 η(F̂ℓ−1(xi))η(F̂ℓ−1(xi))

⊤, defined on the empirical dis-
tribution (here, we omit the layer index ℓ for notational simplicity). Accordingly, let

Σ̂I,J ∈ R|I|×|J | be the submatrix of Σ̂ for index sets I ⊂ [mℓ]
|I|, J ⊂ [mℓ]

|J | such that

Σ̂I,J = (Σ̂i,j)i∈I,j∈J . Let F = {1, . . . ,mℓ} be the full index set. By noting that Ê[ϕϕ⊤] =

Σ̂ due to its definition, we can easily check that ÂJ = Σ̂F,J(Σ̂J,J +Iw)
−1. Hence, we can

decode the full vector ϕ(x) from ϕJ(x) as ϕ(x) ≈ ÂJϕJ(X) = Σ̂F,J(Σ̂J,J + Iw)
−1ϕJ(X).

Another approach is to directly approximate a specific “output” z⊤ϕ for a specific
z ∈ Rmℓ instead of approximating the “input” ϕ as Eq. (1). This can be realized by
solving the following regression problem which we call an “output-aware” approach:

âJ = argmin
a∈R|J|

Ê[∥z⊤ϕ− a⊤ϕJ∥2] + ∥a⊤∥2w.

It can be easily checked that the optimal solution âJ is given as âJ = Â⊤
J z. There-

fore, an output aware compression can be recovered from the input aware method
(1). In particular, the output to the next layer Ŵ (ℓ)ϕ(x)(= Ŵ (ℓ)η(F̂ℓ−1(x))) can be
approximated by Ŵ (ℓ)ϕ(x) ≃ Ŵ (ℓ)ÂĴϕĴ(x).

Selecting optimal subindices Next, we aim to optimize J . Since the output to the
next layer is multi-variate and we need to bound the approximation error of multiple
outputs uniformly to reduce the approximation error in the entire network, we minimize
the following quantity with respect to J : L

(A)
w (J) = maxz∈Rmℓ :∥z∥≤1mina∈Rmℓ Ê[(z⊤ϕ−

a⊤ϕJ)
2]+∥a⊤∥2w. By considering this, our method works no matter what branches there

exist. The right hand side is equivalent to ∥Ê[(ϕ− ÂJϕJ)(ϕ− ÂJϕJ)
⊤] + ÂJIwÂ

⊤
J ∥op,

where ∥ · ∥op is the spectral norm (the maximum singular value of the matrix). By

substituting the explicit formula of ÂJ , this is further simplified as L
(A)
w (J) = ∥Σ̂F,F −



Σ̂F,J(Σ̂J,J +Iw)
−1Σ̂J,F∥op. To obtain the optimal J under a cardinality constraint |J | ≤

m♯
ℓ for a pre-specified width m♯

ℓ of the compressed network, we propose to solve the
following sparse subset selection problem:

min
J

L(A)
w (J) s.t. J ∈ [mℓ]

m♯
ℓ . (2)

Let Ĵ be the optimal J that minimizes the objective. This optimization problem is
NP-hard, but an approximate solution is obtained by the greedy algorithm since it is
reduced to monotone submodular function maximization [17]. That is, we start from
J = ∅, sequentially choose an element j∗ ∈ [mℓ] that maximally reduces the objective

L
(A)
w , and add this element j∗ to J (J ← J ∪ {j∗}) until |J | = m♯

ℓ is satisfied.
An advantage of this approach is that it requires only the covariance matrix, and

it is accomplished by purely linear algebraic procedures. Moreover, our method can
be applied to a complicated network structure in which there are recurrent structures,
several branches, or outputs from the internal layers that are widely distributed to
several other units (e.g., skip connections).

Output aware method Suppose that there is an “important” subset of weight vectors,
say Zℓ ⊂ Rmℓ , such that the output z⊤ϕ corresponding to z ∈ Zℓ should be well
approximated. Then it would be more effective to focus on approximating z⊤ϕ (z ∈
Zℓ) instead of all z⊤ϕ (z ∈ Rmℓ). Here, suppose that Zℓ is a finite set, and let the
weight matrix Z be the one each row which corresponds to each distinguish element
in Zℓ: Zℓ = [z1, . . . , z|Zℓ|]

⊤ where zj ∈ Zℓ. If Zℓ is not a finite set, we may set Zℓ

as a projection matrix to the span of Zℓ. Then, we consider an objective L
(B)
w :=

max∥w∥≤1mina∈Rmℓ Ê[(w⊤Zℓϕ− a⊤ϕJ)
2] + ∥a⊤∥2w, which is equivalent to

L(B)
w (J) = ∥Zℓ[Σ̂F,F − Σ̂F,J(Σ̂J,J + Iw)

−1Σ̂J,F ]Z
⊤
ℓ ∥op.

A typical situation is to approximate the output Ŵ (ℓ)ϕ. In that situation, we may set
Zℓ = Ŵ (ℓ) which corresponds to Zℓ = {(Ŵ (ℓ)

j,: )
⊤ | j = 1, . . . ,mℓ+1}.

Combination of input aware and output aware methods In our numerical experiments,
we have found that only one of either input or output aware method does not give
the best performance, but the combination of them achieved the best performance.
Moreover, if the network has several branches, then it is not trivial which branches
should be included in Zℓ for the output aware method. In that situation, it is preferable
to combine input aware and output aware methods instead of using only the output
aware method. Therefore, we propose to take the convex combination of the both
criteria given for a parameter 0 ≤ θ ≤ 1 as

(Spectral-Pruning) min
J

L(θ)
w (J) s.t. J ∈ [mℓ]

m♯
ℓ . (3)

2.3. Practical algorithm

Calculating the exact value of L
(θ)
w is computationally demanding for a large network

because we need to compute the spectral norm. However, we do not need to obtain
the exact solution for the problem (3) in practice, because, if we obtain a reasonable
candidate that approximately achieves the optimal, then additional fine-tuning gives a

much better network. Hence, instead of solving (3) directly, we upper bound L
(A)
w and

L
(B)
w by replacing the operator norm in their definitions with trace, and minimize it as

a practical variant of our method. By setting w = 0, the objective of the variational



method is reduced to Tr[(θI + (1− θ)RZ)(Σ̂F,F − Σ̂F,JΣ̂
−1
J,JΣ̂J,F )]. Then, the proposed

optimization problem can be rearranged to the following problem:

(Spectral-Pruning-2) min
J⊂{1,...,mℓ}

|J | s.t.
Tr[(θI + (1− θ)Z⊤

ℓ Zℓ)Σ̂F,J Σ̂
−1
J,J Σ̂J,F ]

Tr[(θI + (1− θ)Z⊤
ℓ Zℓ)Σ̂F,F ]

≥ α (4)

for a pre-specified α > 0. Here, since the denominator in the constraint is the best
achievable objective value of the numerator without cardinality constrain, α represents
“information loss ratio.” The index set J is restricted to a subset of {1, . . . ,mℓ} that has
no duplication. This problem is not only much simpler but also easier to implement
than the original one (3). In our numerical experiments, we employed this simpler
problem.

3. Compression accuracy and generalization error analysis
In this section, we give a theoretical guarantee of our model compression method.
More specifically, we introduce a quantity called degree of freedom and show that it
determines the approximation accuracy. Let R > 0 and Rb > 0 be upper bounds of
the parameters, and define the norm constraint model as

F :={(W (L)η(·) + b(L)) ◦ · · · ◦ (W (1)x+ b(1)) | max
j
∥W (ℓ)

j,: ∥ ≤ R/
√
mℓ, ∥b(ℓ)∥∞ ≤ Rb },

where W
(ℓ)
j,: means the j-th column of the matrix W (ℓ), ∥ · ∥ is the Euclidean norm and

∥ · ∥∞ is the ℓ∞-norm. Here, we bound the approximation error induced by compress-

ing the trained network f̂ ∈ F into a smaller one f ♯. First, we make the following
assumption.

Assumption 1. We assume the following conditions on the activation function η which
is satisfied by ReLU activation [22, 10].

• η is scale invariant: η(ax) = aη(x) for all a > 0 and x ∈ Rd (for arbitrary d).

• η is 1-Lipschitz continuous: |η(x) − η(x′)| ≤ ∥x − x′∥ for all x, x′ ∈ Rd (for
arbitrary d).

3.1. Approximation error analysis

Recall that the empirical covariance matrix in the ℓ-th layer is denoted as Σ̂(ℓ). Then,
the degree of freedom is defined by

N̂ℓ(λ) := Tr[Σ̂(ℓ)(Σ̂(ℓ) + λI)−1] =
∑mℓ

j=1 µ̂
(ℓ)
j /(µ̂

(ℓ)
j + λ)

where (µ̂
(ℓ)
j )mℓ

j=1 are the eigenvalues of Σ̂(ℓ). Let (m
♯
ℓ)

L
ℓ=1 denote the width of f ♯. The next

theorem characterizes the approximation accuracy between f ♯ and f̂ on the basis of
the degree of freedom with respect to the empirical L2-norm ∥g∥2n := 1

ntr

∑ntr

i=1 ∥g(xi)∥2
for a vector valued function g.

Theorem 1 (Compression rate via degree of freedom). Suppose that there exists J̃ℓ ⊂
[mℓ+1] such that Zℓ = {Ŵ (ℓ)

j,: /max1≤j′≤mℓ+1
∥Ŵ (ℓ)

j′,:∥ | j ∈ J̃ℓ}. Let λℓ > 0 be

λℓ = inf{λ ≥ 0 | m♯
ℓ ≥ 5N̂ℓ(λ) log(80N̂ℓ(λ))} (5)

and the weight vector w for the regularization is defined by the “leverage score”; that

is, wj =
m♯

ℓλℓ

N̂ℓ(λℓ)

∑mℓ

k=1 U
2
ℓ;j,kµ̂

(ℓ)
k /(µ̂

(ℓ)
k + λℓ) where Uℓ = (Uℓ;j,k)j,k is the orthogonal ma-

trix that diagonalizes Σ̂(ℓ); Σ̂(ℓ) = Uℓdiag
(
µ̂
(ℓ)
1 , . . . , µ̂

(ℓ)
mℓ

)
U⊤
ℓ . Let αj,ℓ = θ−1 (j ̸∈



J̃ℓ), 1 (otherwise) and ζℓ,θ = θ+ (1− θ)∥RZℓ
Σ̂ℓ(Σ̂ℓ + λℓI)

−1RZℓ
∥op. Then, the solution

ÂĴ obtained by Spectral-Pruning (3) satisfies

max1≤j≤mℓ+1

∥Ŵ (ℓ)
j,: ϕ−Ŵ

(ℓ)
j,: ÂĴϕĴ∥

2
n

αj,ℓ
≤ 4ζℓ,θλℓ

mℓ
R2. (6)

Moreover, there exits a universal constant ĉ > 0 such that the parameter of the com-
pressed network satisfies the following norm bound:

∥Ŵ (ℓ)
j,: ÂĴdiag(w)

1/2∥2 ≤ ĉ
λℓαj,ℓ

mℓ
R2 (7)

Moreover, if we solve the optimization problem (3) with an additional constraint∑
j∈J w

−1
j ≤ 5

3
mℓλ

−1
ℓ for all 1 ≤ ℓ ≤ L, then the optimization problem is feasible

and, the overall approximation error is bounded as

∥f̂ − f ♯∥n ≤
∑L

ℓ=2 R̄
L−ℓ+1

√
αmaxζℓ,θλℓ, (8)

where αmax = maxj,ℓ{αj,ℓ} and R̄ =
√
ĉαmaxR.

It is basically proven using the techniques developed by [24]. This theorem indicates
that the approximation error induced by the compression is directly controlled by the
degree of freedom. Since the degree of freedom N̂ℓ(λℓ) is a monotonically decreasing
function with respect to λℓ, it becomes large as λℓ is decreased to 0. The behavior of
the eigenvalues determines how rapidly N̂ℓ(λℓ) increases as λℓ → 0. We can see that if

the eigenvalues µ̂
(ℓ)
1 ≥ µ̂

(ℓ)
2 ≥ . . . decrease rapidly, then λℓ becomes small for a specific

network size m♯
ℓ.

3.2. Generalization error analysis

So far, we have developed an approximation error bound with respect to the “empirical”
L2-distance. Here, we derive a generalization error bound for the compressed network,
which is defined by the population L2 distance. We see that there appears bias-variance
trade-off induced by the network compression. For this purpose, we specify the data
generation model. First, we consider a simple regression model:

yi = f o(xi) + ξi (i = 1, . . . , ntr),

where f o : Rdx → R is the true function that we want to estimate, (xi)
ntr
i=1 is indepen-

dently identically distributed from PX , and (ξi)
ntr
i=1 is i.i.d. Gaussian noise with mean 0

and variance σ2. A regression problem is considered for theoretical simplicity. Nearly
the same discussion is applicable to classification problems with margin conditions such
as Tsybakov’s noise condition [21]. The relative generalization error of f is evaluated
as EX,Y [(Y − f(X))2]−EX,Y [(Y − f o(X))2] = E[(f(X)− f o(X))2] = ∥f − f o∥2L2

where

∥ · ∥L2 is defined as ∥f∥L2 =
√
E[f(X)2]. Hence, we aim to bound ∥f ♯ − f o∥2L2

. The

training error is denoted by L̂(f) := 1
ntr

∑ntr

i=1(yi− f(xi))
2. We assume (approximately)

optimality of the trained network f̂ and the boundedness of the input as follows.

Assumption 2 (Optimality). There exists a constant ζ̂ ≥ 0 such that the following

inequality holds almost surely: L̂(f̂) ≤ minf∈F L̂(f) + ζ̂.

Assumption 3. The support of PX is compact and its ℓ∞-norm is bounded as ∥x∥∞ ≤
Dx (∀x ∈ supp(PX )).



Then, under the same setting as Theorem 1, we define the following constants
corresponding to the norm bounds: R̂∞ := max{R̄LDx +

∑L
ℓ=1 R̄

L−ℓR̄b, ∥f o∥∞}, Ĝ :=

LR̄L−1Dx +
∑L

ℓ=1 R̄
L−ℓ, where R̄ =

√
ĉαmaxR and R̄b =

√
ĉRb for the constants ĉ and

αmax introduced in Theorem 1. To bound the generalization error, we introduce δ1, δ2
defined as1, for λ = (λ1, . . . , λL) ∈ RL

+ and m′ = (m′
1, . . . ,m

′
L) ∈ [m1]× · · · × [mL],

δ1 = δ1(λ) =

L∑
ℓ=2

R̄L−ℓ+1
√
αmaxζℓ,θλℓ, δ22(m

′) =
1

n

L∑
ℓ=1

m′
ℓm

′
ℓ+1 log+

(
1 + 4

√
2Ĝmax{R̄,R̄b}

√
n

σ∧R̂∞

)
.

Under these notations, we obtain the following generalization error bound for the
compressed network f ♯ with respect to the population L2-norm ∥f ♯ − f o∥2L2

.

Theorem 2 (Generalization error bound of the compressed network). Suppose that
Assumptions 1, 2 and 3 are satisfied. Consider a setting where θ = 1 or Zℓ =

Ŵ (ℓ)

max1≤j′≤mℓ+1
∥Ŵ (ℓ)

j′,:∥
for ℓ = 1, . . . , L. Let λℓ > 0 (ℓ = 2, . . . , L) are the variables satisfy-

ing the condition (5): λℓ = inf{λ ≥ 0 | m♯
ℓ ≥ 5N̂ℓ(λ) log(80N̂ℓ(λ))}, and assume that f ♯

satisfy the approximation error bound (8) with the norm bound (7) as given in Theorem

1. Let Rn,t =
(R̂2

∞+σ2)
n

[
log+ log2

⌈
√

n
σ

R̂∞
∧1

⌉
+1+t+

∑L
ℓ=2 log(mℓ)

]
, and m = (m1, . . . ,mL). Then,

there exists a constant C1 > 0 such that for all t > 0,

∥f ♯ − f o∥2L2
≤ C1

{
δ21 + (σ2 + R̂2

∞)δ22(m
♯) + σδ1δ2(m) + min

f∈F
∥f − f o∥2L2

+ ζ̂ +Rn,t

}
uniformly over all choice of m♯ = (m♯

1, . . . ,m
♯
L) with probability 1− 5e−t.

In a small noise situation σ ≃ 0, the main term becomes ∥f ♯ − f o∥2L2
≲

δ21 + δ22(m
♯) ≃ (

∑L
ℓ=2

√
λℓ)

2 + 1
n

∑L
ℓ=1m

♯
ℓ+1m

♯
ℓ log(n). The remaining terms are just

residual terms. Actually, the term Rn,t is basically O(
∑

ℓ log(mℓ)/n), which is much
smaller than δ21 + δ22 and is thus negligible. By Theorem 1, δ1 represents the approxi-

mation error between f̂ and f ♯; hence, it can be regarded as a bias. The second term
δ2(m

♯) is the variance term that is induced by the sample deviation. Here, it should
be noted that the variance term δ2(m

♯) depends only on the size of the compressed
network rather than the original network size. On the other hand, a naive application
of the theorem implies that ∥f̂ − f o∥2L2

≤ δ22(m) = O
(
1
n

∑L
ℓ=1mℓ+1mℓ log(n)

)
(here,

the residual terms are omitted) which is much larger than δ22(m
♯) when m♯

ℓ ≪ mℓ.
Therefore, the variance is reduced significantly by the model compression resulting in
a much improved generalization error.

4. Numerical experiments

In this section, we conduct numerical experiments to show the effectiveness of the pro-
posed method, and justify our theoretical analysis. As for our method, all experiments
have been conducted by the practical variant (Spectral-Pruning-2 (Eq. (4))).

4.1. ImageNet

We apply our method to the ImageNet dataset [6]. We used the ILSVRC2012 dataset
in ImageNet consisting of 1.3M training data and 50,000 validation data. Each im-
age is annotated into one of 1,000 categories. We used a publicly available VGG-16

1 log+(x) = max{1, log(x)}.



Table 1: Performance comparison on ImageNet dataset. Our proposed method is
compared with APoZ-2 [14], SqueezeNet [16], and ThiNet [20]. Our method is indicated
as “Spec-(type).”

Model Top-1 Top-5 # Param. FLOPs

Original VGG [23] 68.34% 88.44% 138.34M 30.94B
APoZ-2 [14] 70.15% 89.69% 51.24M 30.94B
SqueezeNet [16] 57.67% 80.39% 1.24M 1.72B
ThiNet-Conv [20] 69.80% 89.53% 131.44M 9.58B
ThiNet-GAP [20] 67.34% 87.92% 8.32M 9.34B
ThiNet-Tiny [20] 59.34% 81.97% 1.32M 2.01B

Spec-Conv (θ = 0.5) 72.15% 91.06% 131.44M 22.13B
Spec-Conv-FC (θ = 1) 68.66% 88.90% 45.77M 9.58B
Spec-GAP (θ = 0.5) 67.55% 88.27% 8.31M 11.21B
Spec-Tiny (θ = 1) 60.10% 82.89% 2.31M 2.07B

Spec-Conv2 (θ = 0.5) 70.09% 89.82% 131.44M 9.58B
Spec-GAP2 (θ = 0.5) 67.33% 87.99% 8.32M 9.34B

Spec-GAPe (θ = 0.5) 67.78% 88.52% 8.25M 14.77B

network [23] as the original network. We applied our method to this network and com-
pared it with existing state-of-the-art methods, namely APoZ [14], SqueezeNet [16],
and ThiNet [20]. For fair comparison, we followed the same experimental settings as
[20]. The results are summarized in Table 1. It summarizes the Top-1/Top-5 classifi-
cation accuracies, the number of parameters (#Param), and the float point operations
(FLOPs) to classify a single image. Our method is indicated by “Spec-(type).” In Spec-
Conv, we applied our method only to the convolutional layers (it is not applied to the
fully connected layers (FC)). The conv-layers are compressed gradually by solving Eq.
(4) with α = 0.99 a few times until the #Param becomes comparable to ThiNet-Conv
which also applies the ThiNet method only to conv-layers. After each compression
operation, we applied fine tuning. In our experiments, one or two iteration was suf-
ficient to reach the comparable compression rate. Spec-Conv-FC compresses the FC
layers as well as the conv-layers, whereas it is difficult to apply ThiNet to the FC layers
because it is computationally too demanding. We employed θ = 1 for Spec-Conv-FC.
Spec-GAP is a method that replaces the FC layers of Spec-Conv with a global average
pooling (GAP) layer [19, 28]. We chose α so that one time application of the compres-
sion achieves the same #Param as ThiNet-GAP which is also a method utilizing the
GAP layer as the fully connected layer. We employed θ = 0.5 for Spec-GAP. Spec-
GAPe sets the parameter α in each layer as αℓ = 0.9944ℓ for the ℓ-th layer. The other
setting of Spec-GAPe is same as Spec-GAP. Spec-Tiny is a method where Eq. (4)
with α = 0.97 is performed to conv-layers several times until the #Params and FLOPs
becomes comparable to that of ThiNet-Tiny. As for Spec-Conv2, we set the number of
channels in each layer to be same as that of ThiNet-Conv. Similarly, in Spec-GAP2,
we set the number of channels in each layer to be same as that of ThiNet-GAP.

APoZ shows favorable accuracy but this method can reduce the parameters in
only non-convolutional layers. Thus, its applicability is limited; consequently, it does
not reduce the FLOPs significantly. ThiNet is the most comparable method, but
if the number of parameters is set to be equal, our method (especially Spec-Conv)
yields better performance than it. We would like to remark that ThiNet (and existing
methods) does not have a criterion to automatically determine the shape of compressed



network. On the other hand, our method may determine that through the degree of
freedom or the formula (4).

5. Conclusion
We proposed a new model compression frame-work that utilizes both of “input” and
“output”, and showed that the degree of freedom characterizes the extent to which a
trained network can be compressed. The algorithm is easily implemented and can be
run in a layer-wise manner. There appeared bias and variance trade-off according to
compression rate. The numerical experiments showed a favorable performance to the
existing state-of-the-art methods despite its algorithmic simplicity.
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