
COMBINATORICS OF MUTATIONS AND TORSION CLASSES

LAURENT DEMONET

Abstract. We consider the lattice torsA of torsion classes on a finite dimensional algebra.
While this lattice is usually infinite, we show that it can still be well understood by studying its
Hasse quiver. Moreover, we give some interpretation this Hasse quiver in terms of A-modules
that permits to study algebraic quotients of torsA, that is quotients of the form torsA �
tors(A/I),T 7→ T ∩mod(A/I) for an ideal I of A.

As the Hasse quiver of torsA contains naturally the exchange graph of support τ -tilting
modules (as the subset consisting of functorially finite torsion classes), torsA can be viewed as
a way to extend mutations, even though the behavior at non-functorially finite torsion classes
changes drastically, as we will see in Subsection 2.4.

This document propose, in the first section, some reminders about torsion classes and funda-
mental results. The second section describes the lattice theory of torsion classes, mainly in the
case where torsA is finite. The generalization to the case where torsA is infinite given in [DIR+]
will be sketched during the talk. The third part gives a quick overview of the relationship with
g-vectors.

1. Torsion classes

1.1. Torsion pairs. Here, we recall the notion of a torsion pair in a module category over a
finite dimensional k-algebra A over a field k. It is a fundamental tool to study tilting theory
and more generally derived equivalences. We start by giving a rough explanation about tilting
theory and derived equivalences. Recall that the bounded derived category Db(modA) is a
triangulated category containing in a canonical way modA (it is called the heart of the canonical
t-structure). A celebrated case of derived equivalence Db(modA) ∼= Db(modB) for another
finite dimensional algebra B, is called tilting. This is the case when there is a tilting module T ∈
modA such that EndA(T )op ∼= B (we take the opposite algebra here as we consider right modules
and endomorphisms act left). In such a case, there is a derived equivalence Db(modA) ∼=
Db(modB), satisfying the following properties. The pair (FacT, T⊥) is a torsion pair in modA
where

FacT := {X ∈ modA | ∃Tn � X} and T⊥ := {X ∈ modA | HomA(T,X) = 0}.
Also, there is a torsion pair (⊥(DT ),SubDT ) in modB where DT := Homk(T,k),
⊥(DT ) := {X ∈ modB | HomB(X,DT ) = 0} and SubDT := {X ∈ modB | ∃X ↪→ (DT )n}.

Moreover, inside Db(modA), identified with Db(modB), we have FacT = SubDT and T⊥ =
(⊥DT )[1] where [1] is the suspension functor. We illustrate this situation by the following
example

Example 1.1. We consider the quiver Q = 1 → 2 → 3. In order to develop this example, we
recall the Auslander-Reiten quiver of modCQ:

(C→ C→ C)

''
(0→ C→ C)

''

77

(C→ C→ 0)

''

oo

(0→ 0→ C)

77

(0→ C→ 0)

77

oo (C→ 0→ 0)oo
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It turns out that, in this very simple case, called hereditary, the indecomposable objects of
Db(modCQ) are exactly shifted of representations of CQ and Db(modCQ) admits anAuslander-
Reiten quiver, which can be depicted as follows:
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(modCQ)[−2] modCQ (modCQ)[2]

Moreover, the representation T := (C → C → C) ⊕ (C → C → 0) ⊕ (0 → C → 0) depicted by
thick dots in the picture is tilting and satisfies EndCQ(T )op = CQ′ where Q′ = 1′ ← 2′ → 3′.
Indecomposable modules of FacT have been circled and indecomposable modules of T⊥ has
been framed. Then Db(CQ) is equivalent with Db(CQ′) depicted here:
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(modCQ′)[−2] modCQ′ (modCQ′)[2]

where DT = (C← 0→ 0)⊕ (C← C→ C)⊕ (C← C→ 0) has been thicken, SubDT = FacT
has been circled and ⊥(DT ) = (T⊥)[1] has been framed.

Tilting theory was first introduced by Brenner and Butler in [BB] and generalized in mul-
tiple fashions afterwards. See Subsection 1.2 for a generalization. As good classes of derived
equivalences are produced by sequences of tilting, studying torsion pairs is a natural step toward
understanding or classifying derived equivalences.

More precisely, a full subcategory T of modA is a torsion class if it is closed under factor
modules and extensions in modA. Dually, F ⊆ modA is a torsion-free class if it is closed under
submodules and extensions in modA. We say that (T ,F ) is a torsion pair if T is a torsion
class, F is a torsion-free class, and F = T ⊥ (or, equivalently, T = ⊥F ). We denote the
set of torsion (respectively, torsion-free) classes in modA by torsA (respectively, torsf A). An
alternative characterization of torsion pairs is the following: T and F are full-subcategories of
modA such that for all T ∈ T and F ∈ F , HomA(T, F ) = 0 and T ∗F = modA where T ∗F
is the full subcategory of modA consisting of X appearing as the middle term of a short exact
sequence 0→ T → X → F → 0 with T ∈ T and F ∈ F .

We order torsA and torsf A by inclusion. Then there is an anti-isomorphisms of partially
ordered set between them, namely T 7→ T ⊥ and ⊥F ←[ F . It turns out that torsA and torsf A
are in fact complete lattices. In other terms, any family (Ti)i∈I of torsion classes admits a join∨
i∈I Ti, that is a minimum torsion class among classes that are bigger than all Ti’s and a meet∧
i∈I Ti, that is a maximum torsion class among classes that are smaller than all Ti’s and the

same holds for torsion-free classes. In both cases, the meet is easy to construct:
∧
i∈I Ti =⋂

i∈I Ti, and the join is obtained by using the anti-isomorphism above:
∨
i∈I Ti = ⊥ (⋂

i∈I T ⊥i
)
.

Recall that the Hasse quiver HasseL of an partially ordered set L has set of vertices L and an
arrow x→ y if and only if x > y and there is no z ∈ L with x > z > y.

Example 1.2. We continue with the quiver 1→ 2→ 3 and the algebra A := CQ. We give the
Hasse quiver of torsA in Figure 1.3, using positions of modules in the Auslander-Reiten quiver
depicted in Example 1.1.

1.2. Torsion classes coming from τ-tilting modules. A convenient way to study torsion
classes consists of indexing them by certain modules. Unfortunately, torsion classes are not all of
the form FacT where T is a tilting module. Recall that, for a full subcategory D of modA and

2



•••••
•

•••··
·

•··••
•

·••••
•

•···•
·

·••··
·

··•••
•

•····
·

···••
•

··•••
·

··•··
·

···••
·

····•
·

·····
·

||
��

((

((



��
$$

||

$$

~~

((

##

~~ ��

%%

  vv 		

��

zz

vv

Figure 1.3. The lattice tors(CQ)

X ∈ modA, a left D-approximation of X is a map f : X → D with D ∈ D such that any map
from X to D′ ∈ D factors through f . Dually, we define the notion of a right D-approximation of
X. We say that it is functorially finite if any A-module admits left and right D-approximations.
If D is a torsion class, the existence of a right-approximations is automatic, so the existence of
left-approximations is enough.

We denote the set of functorially finite torsion (respectively, torsion-free) classes in modA by
f-torsA (respectively, f-torsf A). We say that an A-module M ∈ T is Ext-projective in T if for
all N ∈ T we have Ext1A(M,N) = 0. The following result permits to start the investigation:

Proposition 1.4. [AS, Hos, Sma] Let A be a finite dimensional algebra and (T ,F ) a torsion
pair in modA. The following statements are equivalent:
(a) The torsion class T is functorially finite.
(b) The torsion-free class F is functorially finite.
(c) There exist a basic A-module P (T ) ∈ T such that FacP (T ) = T and addP (T ) coincides

with the class of Ext-projective A-modules in T .
If any of the above equivalent conditions hold, then the A-module P (T ) is a tilting (A/ annT )-
module.

Adachi–Iyama–Reiten [AIR] have started the study of modules P (T ) appearing in Proposi-
tion 1.4. They are called support τ -tilting. We give a brief introduction to τ -tilting theory.

An A-moduleM is τ -rigid if HomA(M, τM) = 0 where τ is the Auslander-Reiten translation.
We say that M is τ -tilting if, additionally, |M | = |A| holds, where |M | is the number of non-
isomorphic indecomposable direct summands of M . Finally, we say that M is support τ -tilting
if there exists an idempotent e of A such that M is a τ -tilting (A/(e))-module. We denote by
sτ -tiltA the set of isomorphism classes of basic support τ -tilting A-modules, by τ -rigidA the set
of isomorphism classes of τ -rigid A-modules, and by iτ -rigidA the set of isomorphism classes of
indecomposable τ -rigid A-modules. By [AIR, §2.7], M 7→ FacM is a surjection from τ -rigidA
to f-torsA, which restricts to a bijection

Fac : sτ -tiltA
∼−→ f-torsA. (1.5)

Moreover, this bijection is the inverse of T 7→ P (T ) in Proposition 1.4.
We also introduce the notion of a τ -rigid pair. A τ -rigid pair over A is a pair (M,P ) where

M is a τ -rigid A-module and P is a projective A-module satisfying HomA(P,M) = 0. We say
that (M,P ) is basic if both M and P are. We denote by τ -rigid-pairA the set of isomorphism
classes of τ -rigid pairs over A and by iτ -rigid-pairA the subset of τ -rigid-pairA consisting of
indecomposable ones (i.e. (M, 0) with M indecomposable or (0, P ) with P indecomposable).
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Figure 1.6. The lattice sτ -tilt(CQ)

We identify M ∈ τ -rigidA with (M, 0) ∈ τ -rigid-pairA. We say that a τ -rigid pair (M,P ) is
τ -tilting if, in addition, we have |M | + |P | = |A|. Notice that it is a maximality condition for
the property to be τ -rigid. We denote by τ -tilt-pairA the set of isomorphism classes of basic
τ -tilting pair. We have a bijection τ -tilt-pairA→ sτ -tiltA mapping (M,P ) to M .

We lift the partial order on f-torsA to a partial order on sτ -tiltA ∼= τ -tilt-pairA via Fac.

Example 1.7. We continue with our running example Q = 1 → 2 → 3. The Hasse quiver
Hasse(sτ -tiltCQ) is drawn in Figure 1.6. It can be compared to Figure 1.3. We use here the
composition series notation to describe indecomposable modules. Each digits represent a basis
vector supported at the corresponding vertex of the quiver and non-zero matrix coefficients of
the representation are going from top to bottom.

The order on τ -tilt-pairA is characterized in the following way [AIR, Lemma 2.25]: For
(T, P ), (U,Q) ∈ τ -tilt-pairA, we have the inequality (T, P ) ≥ (U,Q) if and only if HomA(U, τT ) =
0 and HomA(P,U) = 0.

Moreover, sτ -tiltA ∼= τ -tilt-pairA is endowed with a mutation. We call a basic pair (T, P ) ∈
τ -rigid-pairA almost τ -tilting if there exists (X,Q) ∈ iτ -rigid-pairA such that (T ⊕X,P ⊕Q) is
τ -tilting.

Theorem 1.8. (a) [AIR, Theorem 2.18] If (T, P ) is an almost τ -tilting pair, there exist exactly
two τ -tilting pairs (T1, P1) and (T2, P2) having (T, P ) as a direct summand.

(b) [AIR, Theorem 2.33] The Hasse quiver of τ -tilt-pairA has an arrow linking (T1, P1) and
(T2, P2) of (a) and all arrows occur in this way.

An easy consequence of Theorem 1.8 is that sτ -tiltA (equivalently f-torsA) is Hasse-regular,
i.e. all vertices of Hasse(sτ -tiltA) have the same valency. In Theorem 1.8(b), the arrow goes from
T1 to T2 if and only if T1 /∈ FacT2. In this case, (T1, P1) is the biggest τ -tilting pair having (T, P )
as a summand and (T2, P2) is the smallest one. We necessarily have (T1, P1) = (T, P )⊕(X, 0) for
X ∈ iτ -rigidA and (T2, P2) = (T, P )⊕ (X∗, Q) for (X∗, Q) ∈ iτ -rigid-pairA, and X∗ is uniquely
determined by the existence of an exact sequence X u−→ T → X∗ → 0, where u is a left minimal
add(T )-approximation of X.
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Theorem 1.8 can be generalized to arbitrary (X,Q) ∈ τ -rigid-pairA in the following way:

Theorem 1.9 ([AIR, Theorem 2.10]). If (X,Q) ∈ τ -rigid-pairA is basic, there is:
• A maximal (T, P ) ∈ τ -tilt-pairA having (X,Q) as a direct summand. It corresponds to the
torsion class ⊥(τX) ∩Q⊥ through the bijection Fac. We call it the Bongartz completion of
(X,Q).
• A minimal (T, P ) ∈ τ -tilt-pairA having (X,Q) as a summand. It corresponds to the torsion
class FacX through the bijection Fac. We call it the co-Bongartz completion of X.

2. Lattices of torsion classes and their quotients

If A is a finite dimensional k-algebra and B = A/I is a quotient of A by an ideal I, then
there is a natural embedding modB ⊆ modA which induces a surjection

torsA� torsB,T 7→ T ∩modB.

It turns out that this surjection is in fact a lattice quotient (i.e. it commutes with meet and join)
[DIR+]. The main aim of this section is to understand or even to characterize, in good cases,
which lattice quotients of torsA can be realized as torsB. Most results are proven in [DIR+]
with Iyama, Reading, Reiten and Thomas. A few results come from an earlier paper with Iyama
and Jasso [DIJ].

A possible strategy to attack this problem consists in using τ -tilting modules. Unfortunately,
as seen in Section 1.2, τ -tilting modules index functorially finite torsion classes and f-torsA is
mostly never a lattice if it is not finite (see [IRTT] for more details). On the other hand, it is
always a lattice when it is finite, as justified by the following result:

Theorem 2.1 ([DIJ, Theorem 1.2]). The set sτ -tiltA is finite if and only if every torsion class
of modA is functorially finite.

Then, by Theorem 2.1, sτ -tiltA is finite if and only if f-torsA = torsA if and only if torsA
is a finite lattice. We call an algebra A satisfying these conditions τ -tilting finite. We focus
here on the case where torsA is finite, so that its lattice structure is intimately related with
the mutation of τ -tilting pairs. A generalized version is proposed in [DIR+], which is sketched
in Subsection 2.4. The key point of Theorem 2.1 is the following one: We prove that for
T ∈ sτ -tiltA and T ∈ torsA such that FacT ) T (respectively T ) FacT ), there is an arrow
T → U (respectively U → T ) in Hasse(sτ -tiltA) such that FacT ) FacU ⊇ T (respectively
T ⊇ FacU ) FacT ) and Theorem 2.1 follows by a combinatorial argument.

In order to study quotients torsA � torsB, which we call algebraic quotients, we need first
to understand general lattice quotients torsA� L. This is the object of the next subsection.

2.1. Lattice quotients of torsA. Let L be a finite lattice. We say that a lattice quotient
π : L � L′ contracts an arrow q : x → y of HasseL if π(x) = π(y). It is immediate that π
is entirely determined by the set of arrows it contracts. However, the set of arrows contracted
by a lattice quotient is subject to constrains. More precisely, we introduce the forcing relation.
We say that an arrow q forces another arrow q′ in HasseL, and we denote q  q′ if for any
lattice quotient π : L � L′, if π contracts q then π also contracts q′. This is clearly a preorder
but not a partial order as it possesses non-trivial equivalence classes. We say that q and q′ are
forcing-equivalent if q  q′ and q′  q, and we denote q! q′.

Suppose now that A is τ -tilting finite. It turns out that torsA has a very nice structure called
polygonality :

Proposition 2.2 ([DIR+]). The lattice torsA is polygonal. In other terms, for any two arrows
T → U and T → V (respectively, U → T and V → T ) of Hasse(torsA), the Hasse quiver
of the segment [U ∧ V ,T ] := {S | U ∧ V ≤ S ≤ T } (respectively, [T ,U ∨ V ]) is a polygon,
i.e. it consists of its top element, its bottom element, and a disjoint union of exactly two chains.
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As a consequence, we have the following description of the forcing relation on torsA:  is
the transitive closure of the relation a ′ b ′ a and a ′ qi for all polygons as follows:

•
b′

$$
a

zz•
q1
��

•
q`+1
��

q` �� q`+m��
•

a′ $$

•
bzz•

2.2. Brick labelling and categorification of the forcing relation. One of the main tools
to study lattice quotients of torsA is the following categorification of the forcing relation defined
in Subsection 2.1. We first define the notion of the brick labelling of Hasse(sτ -tiltA). A brick is
an A-module the endomorphism algebra of which is a division algebra. A set {Si}i∈I of bricks
(or its direct sum) is called semibrick if HomA(Si, Sj) = 0 for any i 6= j. We denote by brickA
the set of isomorphism classes of bricks of A, and by sbrickA the set of isomorphism classes of
semibricks.

For a set X of A-modules, we denote by T(X ) the smallest torsion class containing X . We
denote f-brickA ⊆ brickA the set of bricks S such that T(S) is functorially finite. A first result
about bricks, proved with Iyama and Jasso is the following one:

Theorem 2.3 ([DIJ, Theorem 4.1]). Let A be a finite dimensional algebra. Then there is a
bijection

iτ -rigidA→ f-brickA

given by X 7→ X/ radE X for E := EndA(X).

As an application of Theorem 2.3, we give the following alternative characterization of τ -
tilting finite algebras, which complements Theorem 2.1.

Theorem 2.4 ([DIJ, Theorem 4.2]). Let A be a finite dimensional algebra. Then, the following
conditions are equivalent.
(i) The algebra A is τ -tilting finite.
(ii) The set brickA is finite.
(iii) The set f-brickA is finite.

We now suppose that A is τ -tilting finite. By Theorem 2.1, all torsion classes of modA are
functorially finite, hence f-brickA = brickA. We define a map

Hasse1(torsA) = Hasse1(sτ -tiltA)→ brickA

called the brick labelling. Let RadA be the Jacobson radical of modA. Consider an arrow
q : T → U of Hasse(sτ -tiltA). Then there are decompositions T = X ⊕M and U = Y ⊕M for
indecomposable A-modules X and Y and we prove that

Sq :=
X

RadA(T,X) · T
is a brick, as RadA(T,X) · T ∈ FacT , hence Ext1A(X,RadA(T,X) · T ) = 0.

Definition 2.5. We call Sq the label of the arrow q.

Example 2.6. Consider the algebra

Λ := k

 1
α // 2

β
((
3

β∗
hh

/(αβ, ββ∗, β∗β).

We depict Hasse(sτ -tiltΛ) in Figure 2.9. Labels of arrows are circled.
6
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Figure 2.9. Hasse quiver of the lattice sτ -tiltΛ

It turns out that the brick labelling categorifies the forcing order in the following sense. For
S ∈ sbrickA, denote by FiltS the full subcategory of modA consisting of objects filtered by
elements of S. It is a wide subcategory of modA, i.e. it is closed under kernels, cokernels and
extensions.

Theorem 2.7 ([DIR+]). Let q and q′ be two arrows of Hasse(torsA).
(a) We have q! q′ if and only if Sq = Sq′.
(b) The forcing relation is the transitive closure of the following:

q  q′ if ∃({Sq} t S) ∈ sbrickA,Sq′ ∈ Filt({Sq} t S) \ FiltS.
Thanks to Theorem 2.7(a), we consider  as a partial order on brickA, also denoted by  .

Example 2.8. In Figure 2.9, the arrows labelled by bricks that are forced by 3
2 are doubled.

Using Theorem 2.7 with Theorem 2.3, we get the following important lattice theoretical result.
Recall that T ∈ torsA is join-irreducible if it is not 0 and it cannot be written non-trivially
as the join of two other torsion classes. Equivalently, T is join-irreducible if there is a unique
arrow pointing from T in Hasse(torsA). Dually, we define the notion of meet-irreducible torsion
classes.

Theorem 2.10 ([DIR+]). The lattice torsA is congruence uniform. In other terms, there are
bijections:
• From join-irreducible torsion classes to forcing-equivalence classes of arrows of Hasse(torsA)
mapping T to the class of the unique arrow pointing from T ;
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• From meet-irreducible torsion classes to forcing-equivalence classes of arrows of Hasse(torsA)
mapping T to the class of the unique arrow pointing toward T .

The argument for Theorem 2.10 is an easy consequence of the following facts (and their
duals): First of all, join-irreducible torsion classes are exactly the ones of the form FacX for
X ∈ iτ -rigidA. Secondly, the label of the unique arrow pointing from FacX in this case is
X/ radE X for E = EndA(X). Then we conclude by Theorem 2.3 and Theorem 2.7. Notice that
the surjectivity of both maps described in Theorem 2.10 is a general property of finite lattices,
so the non-trivial point is the injectivity. It is important as in this case the forcing relation
induces partial orders on the set of join-irreducible elements and on the set of meet-irreducible
elements.

Another, more indirect, consequence of Theorem 2.10 is

Theorem 2.11 ([DIR+]). (a) For all (N,Q) ∈ τ -rigid-pairA, the subcategory

W (N,Q) := ⊥(τN) ∩Q⊥ ∩N⊥

is a wide subcategory of modA.
(b) There is a bijection from τ -tilt-pairA to the set of wide subcategories of A, mapping a pair

(T, P ) to W (T/Y, P ) where Y is the minimal summand of T satisfying FacY = FacT .

2.3. Algebraic quotients of the lattice of torsion classes. Recall that if A is a finite
dimensional k-algebra, a lattice quotient torsA� L is algebraic if it is of the form torsA� torsB
for a quotient B = A/I. This subsection is devoted to understand these algebraic quotients from
the point of view of the brick labelling.

Let us fix a quotient B = A/I. A first observation about algebraic quotients is that their
understanding at the level of support τ -tilting modules is well-behaved:

Proposition 2.12 ([DIR+]). (a) If X ∈ τ -rigidA then B ⊗A X ∈ τ -rigidB.
(b) We have a commutative diagram

τ -rigidA
Fac− //

B⊗A−
��

torsA

T 7→T ∩modB
����

τ -rigidB
Fac− // torsB.

Notice that the vertical arrow B ⊗A − of Proposition 2.12 is not necessarily surjective in
general. However, in the case where A is τ -tilting finite, horizontal arrows are isomorphisms of
lattices and both vertical arrows are surjective.

The main result concerning algebraic quotient from the point of view of brick labelling is the
following one:

Theorem 2.14 ([DIR+]). Let A be a finite-dimensional k-algebra that is τ -tilting finite, and I be
an ideal of A. Then an arrow of Hasse(torsA) is not contracted by ΘI if and only if its label is in
mod(A/I). Moreover, in this case, it has the same label in Hasse(torsA) and Hasse(tors(A/I)).

Example 2.15. We illustrate Theorem 2.14 by continuing Example 2.6. Let Λ′ := Λ/(β∗).
Bricks that are not in mod(Λ′) are the ones that have been doubled in Figure 2.9. We provide
Hasse(sτ -tilt(Λ′)) in Figure 2.13, endowed with brick labelling to check Theorem 2.14. Notice
that the same process can be applied to get Figure 2.13 from Figure 1.6, as Λ′ is also a quotient
of k(1→ 2→ 3).

We get the following corollary of Theorem 2.14.

Corollary 2.16 ([DIR+]). Let A be a finite-dimensional k-algebra that is τ -tilting finite and I
be an ideal of A. Then the following are equivalent:
(i) I ⊆ I0 :=

⋂
S∈brickA annS where annS := {a ∈ A | aS = 0};

(ii) The map T 7→ T ∩mod(A/I) is an isomorphism from torsA to tors(A/I).
In particular, I0 is the maximum ideal of A satisfying each of these properties.

8



1
2

∣∣∣ 23 ∣∣∣ 3

1
2

∣∣∣ 1 ∣∣∣ 3

1 | 3

3

1
2

∣∣∣ 1

1

0

2
3

∣∣∣ 3
1
2

∣∣∣ 23 ∣∣∣ 2

1
2

∣∣∣ 2
2
3

∣∣∣ 2

2

2

��

1
2

		

3

  

3

##

1

��

1

zz

3

##

1
2

��

1

{{

2

��

3

$$

2
3
��

2

��

3
##

1

��

2
3

��

2

��

1

��

Figure 2.13. Hasse quiver of the lattice sτ -tiltΛ′

It permits to recover easily the following result by [EJR] in the τ -tilting finite case.

Corollary 2.17. Let A be a finite dimensional k-algebra that is τ -tilting finite and Z the center
of A. Then for any I ⊂ A radZ, ηA(I) is the trivial congruence.

We now give a lattice theoretical insight about the application that maps an ideal I to the
lattice quotient torsA� tors(A/I). We denote by IdealsA the lattice of ideals of A. We denote
by Con(torsA) the lattice of congruence of torsA, i.e. of equivalence relations respecting joins
and meets (they are exactly kernels of lattice quotients). A congruence Θ is bigger than a
congruence Ξ if all arrows contracted by Ξ are also contracted by Θ. We have the following
general results:

Proposition 2.18 ([DIR+]). Let A be a finite dimensional algebra that is τ -tilting finite. The
map ηA : IdealsA→ Con(torsA) mapping I ∈ IdealsA to the kernel ΘI of torsA� tors(A/I) is
order preserving and commutes with joins (but not with meets in general).

2.4. The infinite case. Here, we give an example when torsA is infinite, and we explain roughly
on this example how the concepts defined above generalize to this case. The general version is
in [DIR+].

Let k be an algebraically closed field and Q the Kronecker quiver

2
a
((

b

66 1
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and A = kQ. For (λ, µ) ∈ k2 \ {(0, 0)}, we consider the following brick in modA:

S(λ:µ) =


2

µ

		
λ
��
1


whose isomorphism class only depends of (λ : µ) ∈ P1(k). Then, for S ⊆ P1(k) non-empty,
we define the torsion class T (S ) = Filt(S ∪ {2}). We also define the torsion class T (∅) =⋂

S 6=∅T (S ). Then T : 2P
1(k) → torsA is an injective morphism of complete lattices from the

power set of P1(k) to torsA. We denote by R its image. Then, using classical knowledge about
the Auslander-Reiten quiver of A, the labelled Hasse quiver of torsA is given by

addS1
1

--modA
1 ''

2

11

0.

Fac 2
1 1

2
1 1

// Fac 2 2
1 1 1 R Fac 2 2

1
2 2
1
// addS2

2

;;

Any arrow of HasseR has the form q : T (S ) → T (S ′) for some S ,S ′ ⊆ P1(k) satisfying
S \S ′ = {(λ : µ)} for some (λ : µ) ∈ P1(k). The brick that labels this arrow is Sq = S(λ:µ). To
be more explicit, if P is an indecomposable preprojective module distinct from S1, then FacP
contains all indecomposable modules except the ones that are to its left in the Auslander-Reiten
quiver, if I is indecomposable preinjective, then Fac I contains I and indecomposable modules
that are to its right in the Auslander-Reiten quiver. Finally, T (S ) contains no preprojective
modules, all preinjective modules and the tubes that are indexed by elements of S .

This example is the starting point of a work in progress with Aaron Chan [CD] concerning
idempotent quotients of Brauer graph algebras.

3. Lattices of torsion classes and Grothedieck groups

In this subsection, we investigate a question that is closely related to the lattice structure
of torsion classes. Namely, we study the fan of g-vectors of functorially finite torsion classes
over an algebra, or equivalently, thanks to Proposition 1.4, of τ -rigid modules. As before, A is
a finite dimensional algebra over a field k. We fix a family of orthogonal primitive idempotents
e1, e2, . . . , en of A. Most of the discussion comes from [DIJ]. Notice that more progress have
been made recentely in [Asa, Yur] and that these results have a strong connection to cluster
algebras and scattering diagrams [Bri, GHKK].

Consider a τ -rigid A-module X. As modA has enough projective objects, there is an exact se-
quence P 1

X
u−→ P 0

X
v−→ X → 0 with u and v right minimal and P 1

X and P 0
X projective. Then P •X :=

(P 1
X → P 0

X) is uniquely determined (up to non-unique isomorphism) and is called the minimal
projective presentation of X. Additionally, P •X is presilting, i.e. HomK b(projA)(P

•
X , P

•
X [n]) = 0

for any n > 0 (we refer to classical textbooks, e.g. [Hap], for more details about the homotopy
category K b(projA)). More generally, if (X,P ) ∈ τ -rigid-pairA, then its minimal presentation

P(X,P ) := P •X ⊕ P [1] = (P 1
X ⊕ P → P 0

X)

is also presilting. If, additionally, (X,P ) is a τ -tilting pair, then P •X⊕P [1] is silting, i.e. maximal
presilting up to multiplicities of direct summands.

We get in [DIJ, Proposition 6.3] that, for (X,P ) ∈ τ -rigid-pairA, P 0
(X,P ) and P

1
(X,P ) have no

common direct summands. Therefore, we define the g-vector g(X,P ) = g ∈ Zn in such a way
that

P(X,P )
∼=

⊕
gi<0

(Aei)
−gi →

⊕
gi>0

(Aei)
gi

 .

Pushing the investigation further, we obtain that (X,P ) ∈ τ -rigid-pairA is uniquely deter-
mined by g(X,P ) up to isomorphism [DIJ, Proposition 6.5]. One of the reasons to investigate
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0→ P3

0→ P2
0→ P1

P3 → 0

P2 → 0
P1 → 0

P1 → P2

P2 → P1

Figure 3.1. Geometric realization of ∆(Λ′)

g-vectors of τ -rigid modules is that they generalize the notion of g-vectors of cluster-tilting
objects in cluster categories in a natural way (see [DIJ, §6.4]). In particular, they also satisfy
important properties like sign-coherence. Our point of view here is that it also enrich in a certain
way the partial order structure of sτ -tiltA.

Consider (T, P ) ∈ τ -rigid-pairA. We denote C(T, P ) the cone generated by g-vectors of direct
summands of (T, P ) in Rn. Then we get:

Theorem 3.2 ([DIJ, Theorem 6.6]). Let (T1, P1), (T2, P2) ∈ τ -rigid-pairA. Then C(T1, P1) ∩
C(T2, P2) = C(U,Q) where (U,Q) ∈ τ -rigid-pairA satisfies add(U,Q) = add(T1, P1)∩add(T2, P2).
In particular, C(T1, P1) and C(T2, P2) intersect at their boundaries if add(T1, P1) 6= add(T2, P2).

Theorem 3.2 permits to define a geometric simplicial complex ∆(A) attached to A. This
complex is dual to Hasse(τ -tilt-pairA) (in the sense that vertices of Hasse(τ -tilt-pairA) correspond
naturally to maximal n-cells of ∆(A) and arrows of Hasse(τ -tilt-pairA) to (n−1) cells of ∆(A)).

Example 3.3. As in Example 2.15, let Λ′ be the algebra given by the quiver 1
α−→ 2

β−→ 3
subject to the relation αβ = 0. The complex ∆(Λ′) is illustrated in Figure 3.1. We replaced
indecomposable τ -tilting pairs by their presentations.

A natural question arising from the previous discussion is the following one:

Question 3.4. Is the partial order on τ -tilt-pairA entirely determined by the complex ∆(A)?

We give a partial answer to Question 3.4:

Theorem 3.5 ([DIJ, Theorem 6.11]). Let (X,P ), (Y,Q) ∈ τ -tilt-pairA that are mutation of
each other ( i.e. neighbours in Hasse(τ -tilt-pairA)). Then the following conditions are equivalent,
where (L,R) ∈ τ -rigid-pairA is an object satisfying add(X,P ) ∩ add(Y,Q) = add(L,R).
(i) (X,P ) > (Y,Q).
(ii) Rn≥0 and C(X,P ) are contained in the same closed half-space defined by spanC(L,R).
(iii) Rn≤0 and C(Y,Q) are contained in the same closed half-space defined by spanC(L,R).

In other terms, ∆(A) determines entirely Hasse(τ -tilt-pairA). In particular, if A is τ -tilting
finite, it determines the partial order on τ -tilt-pairA. We conjecture in [DIJ, Conjecture 6.14]
that it is also true for τ -tilting infinite algebras.

We are also interested in the geometry of ∆(A). It is elementary to prove that if A is τ -tilting
finite, then ∆(A) covers all Rn (see also [DIJ, §5]).

In [DIJ], we also prove that if A is τ -tilting finite, then ∆(A) has the so-called combinato-
rial property to be shellable. A consequence of this property is a strong analogous of simple
connectedness. To give this property, let us start by a definition.
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Definition 3.6. We say that a non-oriented cycle γ of Hasse(τ -tilt-pairA) has rank at most ` if
there exists (X,P ) ∈ τ -rigid-pairA with |A|− ` indecomposable summands such that all vertices
γ passes through have (X,P ) as a direct summand.

Let γ and δ be two non-oriented cycles of Hasse(τ -tilt-pairA). We say that γ and δ are related
by cycles of rank ` in one step if, up to cyclic rotation and change of orientation of γ and δ, we
can write γ = εu and δ = εv in such a way that uv−1 has rank at most `. We say that γ and δ
are related by cycles of rank ` if there exist a sequence γ = ε0, ε1, . . . , εk = δ such that for any
i = 1, 2, . . . , k, εi is related to εi−1 by cycles of rank ` in one step.

Then we get:

Theorem 3.7 ([DIJ, Theorem 5.5]). Suppose that A is τ -tilting finite. Then any non-oriented
cycle of Hasse(torsA) is related by cycles of rank 2 to a trivial cycle.
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