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Abstract

As a generalization of Gaussian orthogonal/unitary/symplectic ensembles, Gaussian beta
ensembles, one of the most studied models in random matrix theory, were originally defined
in terms of the joint density of eigenvalues. They have been studied by using some methods in
statistical mechanics because the distributions of eigenvalues can be viewed as the equilibrium
measures of a one-dimensional Coulomb log-gas with an external Gaussian potential. Gaussian
beta ensembles are now realized as eigenvalues of certain random tridiagonal matrices. Since
the discovery of the random matrix models, many new spectral properties of Gaussian beta
ensembles have been established. This talk gives a brief survey on recent developments with
emphasizing on the global regime which deals with the convergence to a limiting measure, and
the fluctuation around the limit of the empirical distributions.

1 Introduction

Gaussian orthogonal (resp. unitary) ensembles (GOE and GUE for short) were introduced to model
the nuclei of heavy atoms in the 1950s by the physicist E. Wigner. On the one hand, they are
ensembles of real symmetric (resp. complex Hermite) random matrices with Gaussian entries. On
the other hand, their distributions are invariant under orthogonal (resp. unitary) conjugations, and
hence the name. They are among a few models in which the joint distribution of eigenvalues can
be calculated explicitly. For GOE and GUE (β = 1 and β = 2, respectively in the following), all
the eigenvalues {λi}Ni=1 are real and their joint density is given by

1

ZN,β

∏
i<j

|λj − λi|β exp

(
− Nβ

4

N∑
i=1

λ2i

)

=
1

ZN,β
exp

{
β

2

(∑
i 6=j

log |λj − λi| −N
N∑
i=1

V (λi)

)}
, (1)

ZN,β being a normalizing constant, and V (x) = x2/2. Gaussian symplectic ensembles (GSE) are
another model with quaternion entries (β = 4). Note that the above joint density is still meaningful
for all positive values of β, leading to define the so-called Gaussian beta ensembles (GβE). GβE
can also be viewed as the equilibrium measure of a one dimensional Coulomb log-gas under the
potential V at the inverse temperature β.

To a random matrix model (with real eigenvalues), we are interested in studying the limiting
behavior of eigenvalues through three main regimes: global, local and edge regimes concerning with
the limiting behavior of the empirical distribution, LN = N−1

∑N
i=1 δλi , the local/bulk statistics

at a reference energy E, ξN (E) =
∑N
i=1 δN(λi−E), and the largest eigenvalue λmax = max{λi : 1 ≤

i ≤ N}, respectively. Here δλ denotes the Dirac measure.
Dumitriu and Edelman (2002) [5] introduced a random matrix model for GβE. They are sym-

metric tridiagonal matrices, called Jacobi matrices, with independent entries having certain dis-
tributions. To be more precise, the eigenvalues of the following matrix TN,β are distributed as
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Gaussian beta ensembles

TN,β =
1√
Nβ


N (0, 2) χ(N−1)β
χ(N−1)β N (0, 2) χ(N−2)β

. . .
. . .

. . .

χβ N (0, 2)

 . (2)

Here N (0, 2) denotes the Gaussian distribution with mean zero and variance 2 and χk denotes the
chi distribution with k degrees of freedom. Since then, various features of the spectrum can be
read off the tridiagonal matrices. Some remarkable results by Virág and his colleagues are: the
convergence to β-Tracy-Widom distributions of the largest eigenvalue [9], and the convergence to
Sine β point processes of the bulk statistics [14].

The talk focuses on the global regime of GβE. For fixed β, it is well known that the empirical
distribution LN,β = N−1

∑N
i=1 δλi , converges weakly to the semicircle distribution, almost surely

(a.s.). This means that for any bounded continuous function f : R→ R,∫
f(x)dLN,β(x) =

1

N

N∑
i=1

f(λi)→
∫ 2

−2
f(x)

1

2π

√
4− x2dx a.s. as N →∞. (3)

The Gaussian fluctuation around the limit was also well established: for smooth enough test
function f , √

β

(
N∑
i=1

f(λi)− E
[ N∑
i=1

f(λi)

])
d→ N (0, σ2

f ), (4)

where σ2
f does not depend on β and is given by

σ2
f =

1

2π2

∫ 2

−2

∫ 2

−2

(
f(x)− f(y)

x− y

)2
4− xy

√
4− x2

√
4− y2

dxdy. (5)

Here ‘
d→’ denotes the convergence in distribution.

How do the above two convergence results depend on β? This talk gives the answer to that
question. In particular, the above two convergences hold as long as Nβ → ∞. In addition, the
class of test functions for which the above Gaussian fluctuation holds is now known to contain all
functions f having continuous derivative of polynomial growth.

This talk also introduces several results in case where Nβ → 2c ∈ (0,∞). In this case, almost
surely, the empirical distribution LN,β converges weakly to a probability measure µc with density

µc(x) =
√
cρc(
√
cx), (6)

ρc(x) =
e−x

2/2

√
2π

1

|f̂c(x)|2
,where f̂c(x) =

√
c

Γ(c)

∫ ∞
0

tc−1e−
t2

2 +ixtdt. (7)

Note that the measure ρc, studied by Askey and Wimp (1984) [2], is called the probability measure
of associated Hermite polynomials. It is worth mentioning that in the local regime, the local/bulk

statistics ξN,β(E) =
∑N
i=1 δN(λi−E) converges weakly to a homogeneous Poisson point process with

intensity µc(E) (see Benaych-Georges and Péché (2015) [3] and Nakano and Trinh (2018) [8]). The
edge regime is open.

2 Wigner’s semicircle law regime

This section introduces several approaches to show Wigner’s semicircle law.

Theorem 2.1 (Wigner’s semicircle law). As N →∞ with Nβ →∞, almost surely, the empirical
distribution LN,β converges weakly to the semicircle distribution, meaning that for any bounded
continuous function f : R→ R,

〈LN,β , f〉 =
1

N

N∑
i=1

f(λi)→
∫ 2

−2
f(x)

1

2π

√
4− x2dx, a.s. (8)

Here 〈µ, f〉 =
∫
f(x)dµ(x) for a probability measure µ and a measurable function f .
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The convergence of random probability measures {LN,β} in the above theorem is in fact the
almost sure convergence of probability measure-valued random variables. To show that type of
convergence, we only need to verify the almost sure convergence of 〈LN,β , f〉 for a suitable class of
test functions f . For instance, each condition below is sufficient for the almost sure convergence
of random probability measures (on the real line) {ξn} to a deterministic limit µ:

(i) the probability measure µ is determined by moments, and for any k = 0, 1, 2, . . . , the sequence
{〈ξn, xk〉} converges almost surely to 〈µ, xk〉;

(ii) for any z ∈ D, the sequence {〈ξn, (· − z)−1〉} converges almost surely to 〈µ, (· − z)−1〉, where
D is a dense subset in {w ∈ C : Im(w) > 0}.

2.1 Potential theory

The argument in this subsection is mainly taken from [7]. Let β > 0 be fixed. We rewrite the joint
density of GβE as

pN,β(λ1, λ2, . . . , λN )

=
1

ZN,β
exp

{
− βN2

2

(
− 1

N2

∑
i 6=j

log |λj − λi|+
1

N

N∑
i=1

λ2i
2

)}

=
1

ZN,β
exp

{
−βN

2

2

(
−
∫∫

x 6=y
log |x− y|dLN (x)dLN (y) +

∫
V (x)dLN (x)

)}
. (9)

Here LN = LN,β = N−1
∑N
i=1 δλi , and V (x) = x2/2.

Let

IV [µ] = −
∫∫

log |x− y|dµ(x)dµ(y) +

∫
V (x)dµ(x)

=

∫∫ (
− log |x− y|+ 1

2
V (x) +

1

2
V (y)

)
dµ(x)dµ(y), (10)

be the energy functional defined on the set P(R) of all probability measures on R. Roughly
speaking, the equilibrium of the system should minimize the energy. It follows from a general
theory that under some conditions on the potential V , there is a unique probability measure µV
for which

IV [µV ] = inf
µ∈P(R)

IV [µ]. (11)

In our considering case, V (x) = x2/2, the minimizer could be shown to be the semicircle distribu-
tion which will be denoted by µ∞,

dµ∞(x) =
1

2π

√
4− x21{|x|≤2}dx. (12)

Moreover, the following result holds.

Theorem 2.2. Let

u
(k)
N,β(x1, . . . , xk) =

∫
pN,β(x1, . . . , xk, λk+1, . . . , λN )dλk+1 · · · dλN (13)

be the k-point function of GβE. Then for any bounded continuous function φ on Rk,

lim
N→∞

∫
Rk
φ(x1, . . . , xk)u

(k)
N,β(x1, . . . , xk)dx1 · · · dxk

=

∫
Rk
φ(x1, . . . , xk)dµ∞(x1) · · · dµ∞(xk). (14)

3



Let f : R → R be a bounded continuous function. Then, the expectation and the variance of
〈LN , f〉 can be expressed as

E[〈LN , f〉] =

∫
f(x)u

(1)
N,β(x)dx,

Var[〈LN , f〉] =
N(N − 1)

N2

∫∫
f(x)f(y)u

(2)
N,β(x, y)dxdy +

1

N

∫
f(x)2u

(1)
N,β(x)dx

−
(∫

f(x)u
(1)
N,β(x)dx

)2

.

As a direct consequence of the above theorem, as N →∞,

E[〈LN , f〉]→ 〈µ∞, f〉, Var[〈LN , f〉]→ 0,

which implies that 〈LN , f〉 converges to 〈µ∞, f〉 in probability. In fact, for smooth enough function
f , we can show that the variance of 〈LN , f〉 is of order N−2, from which the almost sure convergence
follows.

2.2 Variational formula

This subsection introduces another way to identify the equilibrium of the system based on the so
called variational formula. We also fix β > 0 here. Let φ ∈ C1(R) with φ′ bounded from below.
For λ > 0 small enough such that λφ′(y) > −1 for all y ∈ R, we make the change of variables
λi = yi + λφ(yi) in the integral

ZN,β =

∫
exp

{
β

2

(∑
i 6=j

log |λj − λi| −N
∑
i

V (λi)

)}
dλ1 · · · dλN .

It can be deduced from d
dλ logZN,β |λ=0+ = 0 that (cf. Eq. (2.18) in Johansson (1998) [7])

β

2
N(N − 1)

∫∫
φ(x)− φ(y)

x− y
u
(2)
N,β(x, y)dxdy − β

2
N2

∫
V ′(x)φ(x)u

(1)
N,β(x)dx

+N

∫
φ′(x)u

(1)
N,β(x)dx = 0. (15)

The equation is called a variational formula.
For z ∈ C \ R, let φ(t) = 1/(t − z). Since the derivatives of the real part and the image part

of φ are bounded, the equation (15) also holds for the complex-valued function φ. Simplifying it
yields

(N − 1)

N

∫∫
u
(2)
N,β(x, y)

(x− z)(y − z)
dxdy +

∫
V ′(x)u

(1)
N,β(x)

x− z
dx+

2

Nβ

∫
u
(1)
N,β(x)

(x− z)2
dx = 0. (16)

Let S(z) =
∫

(x− z)−1dµ∞(x), z ∈ C \R, be the Stieltjes transform of µ∞. Then Theorem 2.2
implies that as N →∞,∫∫

u
(2)
N,β(x, y)

(x− z)(y − z)
dxdy →

∫∫
dµ∞(x)dµ∞(y)

(x− z)(y − z)
= S(z)2,∫

V ′(x)u
(1)
N,β(x)

x− z
dx = 1 + z

∫
u
(1)
N,β(x)

x− z
dx→ 1 + zS(z),∫

u
(1)
N,β(x)

(x− z)2
dx→

∫
dµ∞(x)

(x− z)2
= S′(z).

Thus, by letting N →∞ in the variational formula (16), we get an equation

S(z)2 + zS(z) + 1 = 0.
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Solving it with noting that for Stieltjes transforms, Im(S(z)) > 0 when Im(z) > 0, we get

S(z) = −1

2

(
z −

√
z2 − 4

)
,

from which, the density of µ∞ is derived

µ∞(x) = lim
ε↘0

1

π
ImS(x+ iε) =

1

2π

√
4− x21|x|≤2.

It is worth mentioning that a variational formula in a more general form (Eq. (2.18) in Johansson
(1998)) is the basis to derive a central limit theorem for

∑
i f(λi).

2.3 A dynamic version

Consider the following system of stochastic differential equations (SDEs)

dλi(t) =
2√
Nβ

dbi(t)− λi(t)dt+
2

N

∑
j 6=i

dt

λi(t)− λj(t)
, i = 1, 2, . . . , N. (17)

Here {bi(t)}Ni=1 are independent standard Brownian motions. When β ≥ 1, the equations have a
unique strong solution in which the particles are non-collide almost surely (Rogers and Shi (1993)
[10]). For 0 < β < 1, some boundary condition need is needed, see Cépa and Lépingle (1997) [4].
It turns out that GβE is the stationary distribution of the above SDEs.

Let

XN
t =

1

N

N∑
i=1

δλi(t)

be the empirical distribution of the particles {λi(t)}. For C2-function f , by Itô’s formula

〈XN
t , f〉 = 〈XN

0 , f〉+

∫ t

0

(∫∫
f ′(x)− f ′(y)

x− y
dXN

s (x)dXN
s (y)

)
ds

−
∫ t

0

〈XN
s , xf

′(x)〉ds+

(
2

β
− 1

)
1

N

∫ t

0

〈XN
s , f

′′〉ds

+
2

√
βN
√
N

∫ t

0

( N∑
i=1

f ′(λi(s))dbi(s)

)
ds. (18)

This may be regarded as a dynamic version of the variational formula (15). Based on this formula,
a dynamic version of Wigner’s semicircle law is derived. Again, β > 0 is assumed to be fixed.

Theorem 2.3. Let µ0 be a probability measure on R. Then we can arrange initial positions for
the particles such that the sequence of probability measure-valued processes {(XN

t )t}N converges
weakly to the limit (µt), the unique continuous probability measure-valued function satisfying

〈µt, f〉 = 〈µ0, f〉+

∫ t

0

(∫∫
f ′(x)− f ′(y)

x− y
dµs(x)dµs(y)

)
ds−

∫ t

0

〈µs, xf ′(x)〉ds, (19)

for all f ∈ C2
b (R) with xf ′(x) bounded. Moreover, as t→∞, µt converges weakly to the semicircle

distribution.

Fluctuations around the limit were studied by Israelsson (2001) [6].

2.4 Random tridiagonal matrix model

Once we have a random matrix model TN,β , it is natural to study the limiting behavior of the
empirical distribution via the trace of (TN,β)k, k = 0, 1, 2, . . . , because

〈LN,β , xk〉 =
1

N

N∑
i=1

λki =
1

N
Tr((TN,β)k) =

1

N

N∑
i=1

(TN,β)k(i, i). (20)
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A sufficient condition for the almost sure convergence of 〈LN,β , xk〉 is: the convergence of the
expectation N−1E[Tr((TN,β)k)] and the almost sure convergence of centered random variables

1

N

(
Tr((TN,β)k)− E[Tr((TN,β)k)]

)
→ 0, a.s. (21)

Observe that for fixed k, the random variable (TN,β)k(i, i) depends locally on entries of TN,β near
the (i, i)-location. In particular, (TN,β)k(i, i) and (TN,β)k(j, j) are independent if |i − j| is large
enough, which enables us to show the almost sure convergence (21) quite easily, even when β varies.

Let Bu, for u ≥ 0, be a doubly infinite Jacobi matrix of the form

Bu =


. . .

. . .
. . .√

u 0
√
u√

u 0
√
u

. . .
. . .

. . .

 =
√
uB1.

For j ∈ {1, 2, . . . , N}, from the local property of (TN,β)k(i, i), we see that

E[(TN,β)k(i, i)] ≈ Bku(0, 0), u = (N − i)/N,

from which, we can deduce that as N →∞,

1

N
E[Tr((TN,β)k)] =

1

N

N∑
i=1

E[(TN,β)k(i, i)]

→
∫ 1

0

Bku(0, 0)du = Bk1 (0, 0)

∫ 1

0

uk/2du =
Bk1 (0, 0)

k/2 + 1
.

When k is odd, it is clear that both E[Tr((TN,β)k)] = 0 and Bk1 (0, 0) = 0. When k = 2p is even,

B2p
1 (0, 0) counts the number of paths from (0, 0) to (2p, 2p) in which each step is up or down only

by 1 unit. The number of such paths is
(
2p
p

)
. Consequently,

1

N
E[Tr((TN,β)k)]

{
= 0, if k is odd,

→ 1
p+1

(
2p
p

)
=: Cp, if k = 2p is even.

The numbers {Cp} are known as Catalan numbers which coincide with the (2p)th moments of the
semicircle distribution µ∞. Note that the odd moments of the semicircle distribution are zero. We
have just derived the following result which implies Wigner’s semicircle law.

Lemma 2.4. Let β > 0 be fixed. Then for any k = 0, 1, 2, . . . , as N →∞,

〈LN,β , xk〉 → 〈µ∞, xk〉, a.s.

Another way to show the convergence of the expectation E[Tr((TN,β)k)] is to use the following
interesting property

1

N
E[Tr((TN,β)k)] = E[(TN,β)k(1, 1)]. (22)

The property is shown as follows. Let {vi}Ni=1 be the normalized eigenvectors of TN,β corresponding
to {λi}Ni=1. Let wi = |vi(1)|2, i = 1, 2, . . . , N . Then as proved by Dumitriu and Edelman (2002)
[5], (wi)

N
i=1 is independent of the eigenvalues {λi}Ni=1 and has the same distribution as that of the

vector (
χ2
β,1∑N

i=1 χ
2
β,i

, . . . ,
χ2
β,N∑N

i=1 χ
2
β,i

)
,

with {χ2
β,i}Ni=1 being i.i.d. chi-squared distributed random variables with β degrees of freedom. It

follows from the spectral decomposition that

(TN,β)k(1, 1) =
N∑
i=1

wiλ
k
i .
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Then the desired equation (22) is a consequence of a simple calculation

E[(TN,β)k(1, 1)] =
N∑
i=1

E[wiλ
k
i ] =

N∑
i=1

E[wi]E[λki ] =
1

N

N∑
i=1

E[λki ] =
1

N
E[Tr((TN,β)k)].

Since TN,β is tridiagonal, (TN,β)k(1, 1) depends only on some top entries. Looking at top
entries, we see that

TN,β =
1√
Nβ


N (0,2) χ(N−1)β

χ(N−1)β N (0,2) χ(N−2)β

. . .
. . .

. . .
χβ N (0,2)

→ ( 0 1
1 0 1
1 0 1

. . .
. . .

. . .

)
=: Jsc.

More precisely, this means that for each i = 1, 2, . . . , as N →∞,

TN,β(i, i)→ 0, TN,β(i, i+ 1) = TN,β(i+ 1, i)→ 1,

in probability and in Lq for any q ∈ [1,∞). Consequently, as N →∞,

E[(TN,β)k(1, 1)]→ Jksc(1, 1).

Given a Jacobi matrix J ,

J =

a1 b1
b1 a2 b2

. . .
. . .

. . .

 , ai ∈ R, bj > 0,

there is a probability measure µ on R satisfying∫
xkdµ(x) = Jk(1, 1), k = 0, 1, . . . .

The matrix J is regarded as a symmetric operator on `2 with domain D0 = {x = (x1, x2, . . . ) :
xk = 0 for k sufficiently large}. It is known that the measure µ is unique, or µ is determined
by moments, if and only if the operator J is essentially self-adjoint. In case of uniqueness, the
probability measure µ is called the spectral measure of J . A useful sufficient condition for that is∑∞
n=1 b

−1
n =∞.

Note that when J is a finite Jacobi matrix of order N , the spectral measure µ of J which is
defined the same as above is unique and is given by

µ =
N∑
i=1

|vi(1)|2δλi ,

where {λi}Ni=1 are the eigenvalues of J , known to be distinct, and {vi}Ni=1 are the corresponding
normalized eigenvectors. Spectral measures of GβE, or more precisely, of TN,β have been studied
by Trinh (2018) [12].

Back to our problem here, for the infinite Jacobi matrix Jsc, the corresponding spectral measure
is nothing but the semicircle distribution. This correspondence can be shown in several ways: by
counting the number of Dyck paths, or by calculating the Stieltjes transform (see Trinh (2018)
[12]). Note also that the approach via random matrix model here could provide a rigorous proof
of Wigner’s semicircle law in case Nβ →∞.

3 The regime Nβ → 2c ∈ (0,∞)

This section introduces several approaches, including heuristic ones, to show the following result.

Theorem 3.1. As N →∞ with Nβ → 2c ∈ (0,∞), almost surely, the empirical distribution LN,β
converges weakly to the probability measure µc with density

µc(x) =
√
cρc(
√
cx),

ρc(x) =
e−x

2/2

√
2π

1

|f̂c(x)|2
,where f̂c(x) =

√
c

Γ(c)

∫ ∞
0

tc−1e−
t2

2 +ixtdt.
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3.1 Potential theory

By some heuristic saddle point argument, the equilibrium of the system in the regime where
Nβ → 2c minimizes the following energy functional

E [µ] = −
∫∫

log |x− y|µ(x)dxµ(y)dy +

∫
V (x)µ(x)dx+

1

c

∫
log(µ(x))µ(x)dx, (23)

on the set of probability density functions µ(x)

µ(x) ≥ 0,

∫
µ(x)dx = 1.

Refer to Allez et al. (2012) [1] for more details.

3.2 Variational formula

Since the argument in the previous subsection is heuristic, in order to use the variational formula,
we need the following conditions for the 1-point function and the 2-point function: for a suitable
class of test functions f , as N →∞ with Nβ → 2c,

(i)

∫
f(x)u

(1)
N,β(x)dx→

∫
f(x)dµc(x),

(ii)

∫∫
f(x)f(y)u

(2)
N,β(x, y)dxdy →

(∫
f(x)dµc(x)

)2

.

Here µc is a probability measure. Note that the condition (i) should be equivalent to the conver-

gence of {u(1)N,β(x)dx} to µc. Under (i), the condition (ii) is equivalent to Var[〈LN,β , f〉]→ 0. Both
conditions can be proved by using the random matrix model and Poincaré’s inequality.

Under those conditions, by letting N → ∞ with Nβ → 2c in the variational formula (16), we
obtain an equation for Sc(z) =

∫
(x− z)−1dµc(x), z ∈ C \ R,

Sc(z)
2 + 1 + zSc(z) +

1

c
S′c(z) = 0. (24)

The above equation is solvable, see Allez et al. (2012) [1]. Then an explicit formula for the
density of µc as in Theorem 3.1 can be derived. The class {µc}c>0 is an interpolation between the
standard Gaussian distribution and the semicircle distribution. To be more precise, as c → ∞,
the probability measure µc converges weakly to the semicircle distribution, and when c→ 0+, ρc
converges weakly to the standard Gaussian distribution.

3.3 A dynamic version

The SDEs corresponding to this regime is

dλi(t) =

√
2√
c
dbi(t)− λi(t)dt+

2

N

∑
j 6=i

dt

λi(t)− λj(t)
, i = 1, 2, . . . , N, (25)

with initial condition λi(t) = x0, i = 1, 2, . . . , N . Note that the fourth term in the equation (18)
now remains when taking the limit. Then Cépa amd Lépingle (1997) [4] proved the following

Theorem 3.2. The sequence of measure-valued processes {(XN
t )t} is weakly convergent and the

limit (µt) is the unique continuous probability measure-valued function satisfying

〈µt, f〉 = f(x0) +

∫ t

0

(∫∫
f ′(x)− f ′(y)

x− y
dµs(x)dµs(y)

)
ds−

∫ t

0

〈µs, xf ′(x)〉ds

+
1

c

∫ t

0

〈µs, f ′′〉ds, (26)

for all f ∈ C2
b (R) with xf ′(x) bounded.
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3.4 Random tridiagonal matrix model

In the regime where Nβ → 2c, by looking at top entries again,

1√
Nβ


N (0,2) χ(N−1)β

χ(N−1)β N (0,2) χ(N−2)β

. . .
. . .

. . .
χβ N (0,2)

 d→ 1√
2c

(N (0,2) χ2c

χ2c N (0,2) χ2c

. . .
. . .

. . .

)
=:

1√
c
Jc.

Here Jc is an infinite Jacobi matrix with independent entries. For convenience in notations, we
consider T̂N,β = (

√
Nβ/

√
2)TN,β instead of TN,β .

Let
mk = mk(N, β) = E[(T̂N,β)k(1, 1)].

Recall that mk = 0, if k is odd. For even k, from formulas for moments of chi distributions, we see
that mk is a polynomial in N and β, and thus, it can be defined for all N, β ∈ R. Some first mk’s
are as follows

m2 = 1− β

2
+N

β

2
,

m4 = 3− 5
β

2
+ 3

(
β

2

)2

+N

{
5
β

2
− 5

(
β

2

)2}
+N22

(
β

2

)2

,

m6 = 15− 32
β

2
+ 32

(
β

2

)2

− 15

(
β

2

)3

+N

{
32
β

2
− 54

(
β

2

)2

+ 32

(
β

2

)3}
+N2

{
22

(
β

2

)2

− 22

(
β

2

)3}
+N35

(
β

2

)3

.

Now, it follows from the convergence in distribution of top entries of T̂N,β that as N →∞ with
Nβ → 2c,

mk(N, β) = E[(T̂N,β)k(1, 1)]→ E[Jkc (1, 1)].

The key point is this approach is the following duality relation

m2p(N, β) = (−1)p
(
β

2

)p
m2p

(
−Nβ

2
,

4

β

)
. (27)

It follows that

E[J2p
c (1, 1)] = lim

Nβ→2c
m2p(N, β) = (−1)p lim

β→∞
(β/2)−pm2p(−c, β). (28)

Identifying the above limit reduces to the problem of considering β → ∞ when N is fixed, which
can be easily seen from the random matrix model. Indeed, for N ∈ N, as β →∞,

(β/2)−1/2T̂N,β =
1√
β


N (0,2) χ(N−1)β

χ(N−1)β N (0,2) χ(N−2)β

. . .
. . .

. . .
χβ N (0,2)

→
 0

√
N−1√

N−1 0
√
N−2

. . .
. . .

. . .√
1 0

 .

Then the following result follows by exchanging N and −c, and changing the sign as well,

E[J2p
c (1, 1)] = lim

Nβ→2c
m2p(N, β) = A2p

c (1, 1),

where Ac is an infinite Jacobi matrix

Ac =

 0
√
c+ 1√

c+ 1 0
√
c+ 2

. . .
. . .

. . .

 .

The spectral measure of Ac is nothing but the probability measure of associated Hermite polyno-
mials, which coincides with ρc(x)dx, see Askey and Wimp (1984) [2]. For more detailed discussion
of this approach, see Shirai and Trinh (2015) [13]. Recall that the almost sure convergence of
centered random variables as in (21) is easily shown. Theorem 3.1 has been proved.
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4 Concluding remarks

We have introduced several approaches to show the convergence to an equilibrium of GβE in any
regime, that is, as Nβ → 2c ∈ (0,∞],

1

N

N∑
i=1

f(λi)→
∫
f(x)dµc(x), almost surely,

for a suitable class of test functions f . The next natural question is about the fluctuation around the
limit. Johansson (1998) [7] established a central limit theorem (CLT) for

∑N
i=1 f(λi) with explicit

formula for the limiting variance by analyzing the joint density of GβE, where the function f is
smooth enough. Using the random matrix model, the author (Trinh (2017) [11]) established a CLT
for polynomial test functions via a martingale approach in any regime. An extension to C1 functions
whose derivative is of polynomial growth is then done with the help of Poincaré’s inequality. An
explicit formula for the limiting variance mentioned in the introduction is a consequence of the
result for GOE or GUE, because the limiting variance does not depend on β.
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