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Abstract
As one of the Millennium Prize Problems, the problem of existence and
smoothness of the Navier–Stokes equation draws the attention of mathe-
matician from the world. Meanwhile, the verified computing with assis-
tance of computers has proved to be a promising approach to investigate
the solution existence to nonlinear equation systems. In this talk, I will
report the latest progress about the solution verification for the stationary
Navier–Stokes equation over a non-convex 3D domain.

1. Introduction
The verified computing, as a new approach to investigate the solution existence to
nonlinear equation systems, is drawing attention of researchers. In the past decades,
there have been several fundamental results as the milestones to the objective of the
solution verification for non-linear equations; see early work of M. Plum, M. Nakao
and S. Oishi [14, 11, 13]. As a success case, the solution verification of Stokes’ wave of
extreme form is given in [5] by K. Kobayashi.

In this talk, we explain the basic idea of our newly developed method for the purpose
of solution verification for the stationary Navier-Stokes equation over a non-convex 3D
domain Ω,

−∆u+ (u · ∇)u+∇p = f , div u = 0 in Ω,u = 0 on ∂Ω .

Here, f : Ω → R3 is an applied body force, u : Ω → R3 is the velocity vector and
p : Ω → R is the pressure. In addition, symbols ∆, ∇ and ∇· denote the Laplacian,
gradient and divergence operators, respectively.

The solution verification is under the frame of Newton-Kantorovich’s theorem along
with the quantitative error analysis for the finite element methods. Such technique has
been successfully applied to various non-linear equations, for example, the semilinear el-
liptic equation [16]. For the kernel problems required in applying Newton-Kantorovich’s
theorem, we take the following schemes.

1) To bound the norm of the inverse of a differential operator, the algorithm based
on the fixed-point theorem [17] is utilized; a reformulation of this algorithm can
be found in [16].
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2) To give the a priori error estimation of the projection from solution existing space
to finite element spaces, the hypercircle method [9, 3] is generalized to the Stokes
problem to deal with the divergence-free condition.

3) The rigorous eigenvalue estimation for differential operators in 3D domain is
provided by using the non-conforming finite element method [7].

2. Function spaces and the main theorem
Define function space V by

V = {v ∈
(
H1

0 (Ω)
)3 | div v = 0} , (1)

along with inner product and norm

(u, v) :=

∫
Ω

∇u · ∇v dΩ, ∥u∥V :=
√
(u, u) .

The dual space of V is denoted by V ∗. Define A : V → V ∗ and N : V → V ∗ by

⟨A[u], v⟩ = (ϵ∇u,∇v), ⟨N [u], v⟩ = −((u · ∇)u, v) + (f, v) .

Then the Navier-Stokes equation can be formulated as the equation of functional.

F := A−N , F [u] = 0 .

2.1. The main tool of computer-assisted solution verification
Below is the main theorem in our algorithm to verify the solution existence.
Theorem 1 (Newton-Kantorovich’s theorem). Given û ∈ V , assume F ′[û] is regular
and the following inequality holds with constant α > 0�

∥F ′[û]−1F(û)∥V ≤ α .

Let B(û, 2α)(⊂ V ) be the closed ball centered at û and the radius being 2α. Assume
the following inequality holds for an open ball D satisfying B(û, 2α) ⊂ D along with
the constant ω,

∥F ′[û]−1(F ′[v]−F ′[w])∥V,V ≤ ω∥v − w∥V , ∀v, w ∈ D .

If αω ≤ 1/2 holds, then F [u] = 0 has a unique solution in u ∈ B(û, ρ), where ρ is
given by

ρ :=
1−

√
1− 2αω

ω
.

To apply the Newton-Kantorovich theorem, the following quantities should be es-
timated explicitly.

1. Norm estimation for the inverse of F ′[û] : ∥F ′[û]−1∥V ∗,V ≤ K.

2. Residue error of û : ∥F [û]∥V ∗ ≤ δ.

3. Local continuity of F ′ : ∥F ′[v]−F ′[w]∥V,V ∗ ≤ G∥v − w∥V , ∀v, w ∈ D.



Once the quantities K�δ�G are evaluated, the constant α and ω can be given as

α := Kδ, ω := KG

If K2Gδ ≤ 1/2 holds, then there exists a unique solution of F [u] = 0 in B(û, ρ).

Below we show a related theoretical result from Girault-Raviart’s book for exploring
the solution existence of the Navier-Stokes equation.
Theorem 2. Theorem 2.2 (Chapter IV) of [1] Let N and ∥f∥V ∗ be defined by

N := sup
u,v,w∈V

∫
Ω
(w · ∇)uvdΩ

∥u∥V · ∥v∥V · ∥w∥V
, ∥f∥V ∗ = sup

v∈V

(f, v)

∥v∥V
.

If N · ∥f∥V ∗/ϵ2 < 1, then the Navier-Stokes equation has unique solution in V .
This theoretical result can be utilized for solution existence in the case that ϵ is not

small. In the section of numerical example, we will show an example with small ϵ that
this theory fails to draw conclusion while our proposed method works well.

Sub-problems Compared with the non-linear problems already solved by using
Newton-Kantorovich’s theorem, there are two challenging sub-problems in solving the
Navier-Stokes equation.

a) The a priori error estimation for the Stokes equation, especially for domain of
general shapes in 3D space.

b) The rigorous eigenvalue estimation for differential operator over domain of general
shapes.

Preparation: finite element spaces Let us introduce the finite element method
spaces to be used, which are defined over a regular subdivision T h for Ω.
Discontinuous space Xh of degree d Xh is the set of piecewise polynomial of degree d
without the requirement of continuity. Define Xh := (Xh)

3.
Conforming FEM space Uh(⊂ (H1(Ω))

3
) and Vh(⊂ V ) of degree k.

• Let Uh be the set of piecewise polynomials of degree up to k, which also belongs
to H1(Ω). Define Uh := (Uh)

3.

• Let Uh,0 := {uh ∈ Uh|uh = 0 on ∂Ω}, Uh,0 := (Uh,0)
3.

• Let Vh be the subspace of Uh,0 with member function satisfying the divergence-
free condition, i.e., Vh = {uh ∈ Uh,0 | div uh = 0} = Uh ∩ V .

Construction of Vh Generally, it is difficult to construct Vh directly due to the
divergence free condition. We turn to utilize the Scott-Vogelius type FEM space,

Vh = {v ∈ Uh,0 | (div v, ηh) = 0 ∀ηh ∈ Xh} ,

where the degree k of Vh and the degree d of Xh satisfy d = k − 1.



The Raviart-Thomas FEM space RTh of degree m The mth order Raviart-Thomas
space is defined as follows.

RTh := {ph ∈ H(div; Ω) | ph|K = (a+ dx, b+ dy, c+ dz), a, b, c, d ∈ Pm(K)} .
where Pm(K) denotes the set of polynomials on element K with degree up to m.

In the discussion below, the selection of k, d and m satisfies d = m = k − 1.

2.2. Sub-problem a): The a priori error estimation for the Stokes equation
Let us consider the following Stokes equation over domain Ω.

−∆u+∇p = f , ∇ · u = 0 in Ω, u = 0 on ∂Ω .

With the function V defined in (1), the weak formulation is: Find u ∈ V, s.t.,
(∇u,∇v) = (f ,v) ∀v ∈ V . (2)

Conforming finite element solutions To solve the problem numerically, let us apply
the finite element spaced introduced in §2. Particularly, to have a stable computation,
the mesh is generated by using the method proposed by S. Zhang [18].

The weak formulation of Stokes equation in FEM spaces is given by saddle point
problem: Find uh ∈ Uh,0, ρh ∈ Xh, s.t.,

(∇uh,∇vh) + (∇ · vh, ρh) + (∇ · uh, ηh) = (f ,vh), ∀vh ∈ Uh,0,∀ηh ∈ Xh .

The hypercircle equation (Prage-Synge’s Theorem) The hypercircle equation method,
also named by Prage-Synge’s Theorem [15], has been successfully applied to the Poisson
equation for the purpose of the a priori error estimation [9, 3]. Here, we introduced an
extended version of the hypercircle equation and construct the a priori error estimation
for the Stokes equation.

Let u ∈ V be the exact solution of the Stokes equation. Take p ∈ H(div; Ω)3, s.t.
∇ · p+∇ϕ+ f = 0, for certain ϕ ∈ H1(Ω) .

Then for any v ∈ V, the following hypercircle equation holds,
∥∇u−∇v∥2 + ∥∇u− p∥2 = ∥p−∇v∥2 .

A priori error estimation Define the quantity κh by

κh = max
fh∈Xh

min
ph,vh

∥ph −∇vh∥
∥fh∥

.

where the minimization of ph,vh is subject to vh ∈ Vh and
∇ · ph +∇ϕh + fh = 0 for certain ϕh ∈ Uh .

By utilizing the quantity κh, we obtain the a priori error estimation for FEM
solution to (2): for any f ∈ L2(Ω)

3,

∥∇u−∇uh∥ ≤ Ch∥f∥ (Ch :=
√
κ2
h + C2

0,h) . (3)

Here C0,h is a computable quantity related to the error estimation of the L2-
projection πh : L2(Ω) → Xh: for any u ∈ H1(Ω),

∥u− πhu∥ ≤ C0,h∥∇u∥ (C0,h = O(h)) . (4)
Then for A−1 := ∆−1/ϵ, we have, with Ch(ϵ) = Ch/ϵ, for any f ∈ L2(Ω)

3,
∥∇(I − Ph)(A−1f)∥ ≤ Ch(ϵ)∥f∥ .



2.3. Sub-problem b): Eigenvalue estimation of differential operators
The evaluation of K is to estimate the norm of the inverse of a differential operator,
which reduces to solving eigenvalue problems of operators. Since the involved eigen-
value problem is related to non-self-adjoint differential operator K, it is not easy to
deal with directly. A choice is to apply the idea of M. Plum to consider K · K∗ (K∗:
the conjugate operator of K). Here we turn to the method proposed by M. Nakao to
avoid the eigenvalue estimation [12]. An earlier similar approach can also be found in
S. Oishi [13].

Except for the problem of evaluating K, the eigenvalue problem also appears in esti-
mating various constants, for example, the Poincare constant in 3D domain. Generally
it is difficult to give lower bound for the eigenvalues. In [9, 7], the finite element meth-
ods are adopted to provide eigenvalue bounds in an efficient way. Here, we introduce
the case of the Laplacian with homogeneous Dirichlet boundary condition [7].
Eigenvalue problem Find λ ∈ R and u such that

−∆u = λu in Ω; u = 0 on ∂Ω. (5)

Let V CR
h be the Crouzeix-Raviart FEM space under the discretized homogeneous

Dirichlet condition, i.e., every vh ∈ V CR
h has zero integral on each boundary edge of

the mesh. Let λh,k be the approximated eigenvalue obtained by solving the eigenvalue
problem in V CR

h : Find λh ∈ R and uh ∈ V CR
h , s.t.,

(∇uh,∇vh) = λh(uh, vh), ∀vh ∈ V CR
h .

Then, we have lower bounds as follows [7],

λk ≥
λh,k

1 + 0.38042h2λh,k

(k = 1, 2, · · · , dim(V CR
h ) .

For more results about bounding eigenvalues and various error constants, refer to
[10, 8, 2, 4, 6].

3. Outline of the computer-assisted solution verification
In this section, with 4 steps, we explain the construction of approximate solution û ∈ Vh

and the estimation K, δ and G.

3.1. Step 1: Approximate solution û

In test problem, the approximation û is taken as the approximation of exact solution u.
Let uh ∈ U0,h be an approximation to u. Since uh may not satisfy the divergence-free
condition, one-step correction is performed to get û ∈ Vh.

Find û ∈ Uh,0 , ϕh ∈ Xh such that

(∇û,∇vh) + (divû, ηh) + (divvh, ϕh) = (∇uh,∇vh) ∀vh ∈ Uh,0, ηh ∈ Xh

The solution û of the above equation belongs to Vh. For a well approximate solution
uh, it is expected that û ≈ uh.



3.2. Step 2: Estimation of K

Theorem 3 (Estimation of K [12]; see a compact proof in [16]). Suppose the following
inequalities holds with the constants ν1, ν2, ν3,

∥PhA−1N ′[û]uc∥V ≤ ν1∥uc∥V , ∀uc ∈ V ⊥, (6)
∥N ′[û]u∥V ∗ ≤ ν2∥u∥V , ∀u ∈ V, (7)
∥N ′[û]uc∥V ∗ ≤ ν3∥uc∥V, ∀uc ∈ V ⊥. (8)

Here, V ⊥ is the orthogonal complement space of Vh in V. Assume the operator Ph(I −
A−1N ′[û])|Vh

: Vh → Vh is invertible and the following estimation holds along with the
constant τ ∥∥∥(Ph(I −A−1N ′[û])|Vh

)−1
∥∥∥
L(V,V )

≤ τ .

Define κ := Ch(ϵ)(ν1τν2 + ν3). If κ < 1, then we have

∥{F ′[û]}−1∥V ∗,V ≤ K,

where

K :=

∥∥∥∥( τ
(
1 + Chν1τν2

1−κ

)
τν1
1−κ

Chν2τ
1−κ

1
1−κ

)∥∥∥∥
E

,

and ∥ · ∥E is the Euclidean norm of a matrix.

Below, we show how to estimate the constants ν1, ν2, ν3 and τ .

Estimation of ν1 Let wh := PhA−1N ′[û]uc, Then

(ϵ∇wh,∇vh) = (N ′[û]uc, vh) ∀vh ∈ Vh .

Taking vh := wh, then we have

ϵ∥∇wh∥2 ≤ ν3∥uc∥V ∥wh∥ ≤ ν3∥uc∥V · Cp∥∇wh∥ .

Hence,
ν1 ≤

1

ϵ
ν3Cp .

Here, Cp is the Poincare constant that satisfies

∥v∥ ≤ Cp∥∇v∥ ∀v ∈ H1
0 (Ω) .

Estimation of ν2, ν3 By applying the Schwartz inequality to (N ′[û]u, v), it is easy to
obtain that

ν2, ν3 ≤ (
√
3∥û∥∞ + 3∥∇û∥Cp) .

Estimation of τ Given uh ∈ Vh, let us define a mapping T : Vh → Vh, such that
wh = Tuh satisfies,

(∇wh,∇vh) = (∇uh,∇vh)−
1

ϵ
(N ′[û]uh, vh) ∀vh ∈ Vh .

Then the constant τ can be characterized by

τ = max
wh∈Vh

∥T−1wh∥V
∥wh∥V

.



The mapping T can be constructed by considering the following variation problem:
Find wh ∈ Uh,0, ϕh ∈ Xh, c ∈ R,

(∇wh,∇vh)+(div wh, ηh)+(div vh, ϕh)+(d, ϕh)+(c, ηh) = (∇uh,∇vh)−
1

ϵ
(N ′[û]uh, vh).

for all vh ∈ Uh,0, ηh ∈ Xh, d ∈ R .

3.3. Step 3: Estimation of δ

First, let us seek ph ∈ RTh that gives an approximation to ∇û. We select ph as the
minimizer of

min
ph∈RTh

∥ph −∇û∥ .

subject to the constraint condition as follows.

(ϵ div ph − (û · ∇)û+ f , ηh) = 0, ∀ηh ∈ Xh .

With the selection of ph, we have

⟨F [û], v⟩ = ϵ (∇û− ph,∇v) + (−ϵ div ph + (û · ∇)û− f , v) .

With the error estimation for projector πh : L2(Ω) → Xh, it is easy to have

δ = ∥F [û]∥V ∗ ≤ ϵ∥∇û− ph∥+ C0,h∥(I − πh) ((û · ∇)û− f) ∥ .

3.4. Step 4: Estimation of G

Notice that
⟨(F ′[v]−F ′[w])u, ũ⟩ = ((N ′[v − w])u, ũ)

and

((v − w) · ∇)u, ũ) ≤
√
3∥v − w∥L4∥∇u∥∥ũ∥0,4 ≤

√
3C2

4,p∥∇(v − w)∥ · ∥∇u∥ · ∥∇ũ∥ ,

where C4,p is defined by

C4,p := max
v∈H1(Ω)

∥v∥L4

∥∇v∥
.

From Plum’s result, we have an upper bound of C4,p as C4,p ≤ (2λ1)
−1/4. where λ1 is

the first eigenvalue of Laplacian defined in (5). Thus,

G ≤ 2
√
3(2λ1)

−1/2 =

√
6√
λ1

.

4. Numerical examples
4.1. Problem setting
We perform numericial computation for the problem with the following setting.

Ω = ((−1, 1)2 \ [−1, 0]2)× (0, 1), f = (0, (ey−0.7 − 1)e−5(1−y)2
√
1− y, 0), ϵ = 0.03 .

The selectoion of f helps to create the a vortex in the fluid. See graph of f and the
approximate solution in Fig. 1.



Figure 1: The graph of 2nd part of f and the approximate solution

Mesh and FEM spaces

• Mesh T h: Along x-,y-direction, the longest edge of the domain boundary is
divided to N = 16 parts, and along the z-direction the edge is divided into N/2 =
8 parts. Thus total 512× 3 blocks. Then each block is divided into 5 tetrahedra.
Finally, each tetrahedron is further divided into 4 sub-tetrahedra by following
Zhang’s method [18]. Thus the number of elements is 30720(= 512× 3× 5× 4).

• The degree of FEM function spaces is selected as: d = 1,m = 1, k = 2.

Values of various quantities used in the solution verification

• The minimal eigenvalue λ1 of Laplacian with homogeneous boundary condition
and the Poincare constant Cp:

λ1 > 19.1, Cp = 1/
√
λ1 = 0.2288 .

• Error constants in a priori error estimation: C0,h in (4) and Ch in (3)

C0,h = 0.0343, Ch =
1

ϵ

√
κ2
h + C2

0,h =
1

ϵ

√
0.04822 + 0.03382 ≤ 1.976 .

• Estimate of K (norm of inverse operator F ′[û]−1):

ν1 = 0.5073, ν2 = ν3 = 0.06651, τ = 2.7082, K = 4.1411 .

• Estimate of residue error of F [û] and local continuity.

δ = 0.000393, G ≤ 0.5605 .

• The condition for Newton-Kantorovich’s theorem.

αω = K2δG = 0.0038386 < 1/2 .



Conclusion From the Newton-Kantorovich theorem, without taking the rounding er-
ror into account, we can declare the stationary solution existence and uniqueness of
the Navier-Stokes equation inside the ball B(û, ρ), where

ρ =
1−

√
1− 2αω

ω
= 0.001658 .

Remark 4. Let us apply Girault-Raviart’s theorem to the problem considered here.
Since N is difficult to evaluate, we apply the theoretical upper bound using quantity G.

N ≤ G ≈ 0.5605, ∥f∥V ∗ ≈ 0.0049 .

With ϵ = 0.03, we have

N · ∥f∥V ∗/ϵ2 ≤ 0.5605 ∗ 0.0049/0.032 ≈ 3.052 (> 1) .

Therefore, the solution existence cannot be shown easily by only using Girault-Raviart’s
theoretical result.

5. TODO problems
In this talk, we propose a realizable method to provide solution verification for the sta-
tionary solution of the Navier-Stokes equation. To have a complete proof, the rounding
error should be estimated rigorously. However, this is not trivial work, because the
matrix involved in the computing is has the dimension about 1 million. Such prob-
lem will be attacked in near future with the help of researchers on high-performance
computing. Also, larger Reynolds number will bring essential difficult in the solution
verification, which is also challenging working in the future research.
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