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1. Introduction

The cohomology ring of a topological space is a skew commutative graded ring. There
is no distinction between right-ideal and left-ideal, so it is very close to a commutative
ring. The subring of a cohomology ring consisting of the homogeneous parts of even
degrees is a commutative graded ring. We consider only commutative graded rings.

We are interested in the properties of graded Artinian Gorenstein ringsA =
⊕d

i=0 Ai.
It is well known that graded Artinian Gorenstein rings satisfy an analogue of Poincaré
duality and in this sense one can regard them as algebraic analogues of cohomology
rings of smooth complex manifolds. It is then an interesting problem to understand
which properties of complex manifolds carry over to this purely algebraic setting. For
example, cohomology rings of complex manifolds with a Kähler structure satisfy the
hard Lefschetz theorem. On the algebraic side, one can ask which graded Artinian
Gorenstein rings satisfy something analogous called the strong Lefschetz property.

In 1983 David Rees posed the following problem: For which ideals I is it true that
µ(J) ≤ µ(I) for all ideals J ⊃ I? (µ(I) denotes the number of generators of the
ideal I, see [16].) In an effort to answer this problem, the definition of the Lefschetz
property for Gorenstein algebras naturally arose and I spoke about the definition and
some properties concerning it at the Japan–US conference for commutative algebra
and combinatorics in summer 1985. In my paper [17] I called it the Stanley property
rather than the Lefschetz property, since R. Stanley had done a pioneering work in
[15] where he used the hard Lefschetz theorem to prove that certain posets have the
Sperner property.

In this conference, I spoke about the conjecture which says we could expect that
every complete intersection has the strong Lefschetz property over a field of charac-
teristic zero. I had hoped that this drew the attention of many researchers to this
problem, but there were no clues to go any further except a few consequences that are
derived directly from the definition.

By 1995, except a very few, nobody seemed to be interested in this problem (to
prove or disprove the strong Lefschetz property for complete intersections). However,
around the turn of the century Migliore and Nagel succeeded to prove that complete
intersections with embedding dimension three have the weak Lefschetz property. Their
method was to apply the Grauert-Mülich theorem of vector bundles to the syzygy
bundle of height three complete intersection ideals. (See [6].)

After that gradually the number of researchers began to increase. In the last 15
years numerous applications have been found, as a result of which the theory of the
Lefschetz property is now of interest in its own right. It also has ties to other areas,
including combinatorics, algebraic geometry, algebraic topology, commutative algebra
and representation theory. The connection between the Lefschetz property and other
areas of mathematics are not only diverse, but sometimes surprising, e.g., its ties to
the Schur-Weyl duality.
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Migliore-Nagel [11] is a very good introduction to the theory of the strong and weak
Lefschetz properties.

2. Definition of the strong Lefschetz property
“The strong Lefschetz property” can be defined for a graded vector space.

Definition 1. Suppose that V =
⊕d

i=0 Vi is a graded vector space over a field K and
f ∈ EndK(V ) is a graded endomorphism of degree one (i.e., f(Vi) ⊂ Vi+1). We say
that f is a Lefschetz endomorphism if the map

fd−2i : Vi → Vd−i

is bijective for all i = 0, 1, 2, . . . , [d/2]. We say that a pair (V, f) of a graded vector
space and an endomorphism has the strong Lefschetz property if f is a Lefschetz
endomorphism. The sequence of integers

dimK V0, dimK V1, . . . , dimK Vd

is called the Hilbert series of the vector space V . Sometimes it is written as a
polynomial in q

a0 + a1q + a2q
2 + · · ·+ adq

d,

where ai = dimK Vi. d is called the top degree. We apply a similar definition to a
degree −1 map f ∈ EndK(V ) (i.e., f(Vi) ⊂ Vi−1) as well as a degree +1 map. Unless
otherwise specified, we take f to be a degree +1 endomorphism.

The next proposition is obvious but important.

Proposition 2. Suppose that V =
⊕d

i=0 Vi is a graded vector space. For the vector
space V to afford a strong Lefschetz endomorphism, it is necessary that the Hilbert
series be unimodal and symmetric.

Remark 3. When we say that
(
V =

⊕d
i=0 Vi, f

)
has the strong Lefschetz property, we

do not exclude the case V0 = Vd = 0. If d = 2d′ and if Vk = 0 for ∀k ̸= d′, then (V, 0)
has trivially the strong Lefschetz property. Even if Vd = 0, we call d the top degree.
The half integer (or integer) d/2 is called the reflecting degree.

Example 4. Let K be any field, K[x] the polynomial ring in one variable, and put
V = K[x]/(xd). Then we may consider the multiplication map ×x : V → V defined by
v 7→ vx. The pair (V,×x) has the strong Lefschetz property. The top degree is d− 1.

Example 5. Let K be a field, charK = p, p = 0 or p > c + d − 2, and K[x, y] the
polynomial ring in two variables. Put V = K[x, y]/(xc, yd). Let ×(x + y) : V → V
be the multiplication map by (x + y), i.e, ×(x + y) is defined by v 7→ v(x+ y). Then
(V,×(x+y)) has the strong Lefschetz property. (Proof is not so easy as it seems.) The
top degree of V is c+ d− 2.

Example 6. Let P be the set of square-free monomials in the variables {x1, x2, . . . , xn},
and Pk = {S ∈ P |degree S = k}. We have the decomposition P =

⊔n
k=0 Pk. Let fk be

the 01-matrix representing the divisibility relation between Pk and Pk+1. Namely the
matrix fk is defined by fk = (fkSS′) with

fkSS′ =

{
1, if S divides S ′, (S, S ′) ∈ Pk × Pk+1,
0, otherwise.



Note that S, S ′ are monomials and the rows and columns of fk are indexed by the sets
Pk and Pk+1 respectively. Let V be the vector space spanned by P over K = Q and Vk

by Pk. Then V =
⊕n

i=0 Vi is a graded vector space and the Hilbert series is (1 + q)n,
i.e., (

n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)
.

We may regard fk as a linear map fk : Vk → Vk+1, so we have a sequence of homomor-
phisms

V0
f0−→V1

f1−→· · · fn−1−→Vn.

Let f = (fk)
n−1
k=0 . Then f is a degree one endomorphism f : V → V . (V, f) has the

strong Lefschetz property. (Various proofs are known.) The top degree is n.

Proposition 7. Let V =
⊕d

i=0 Vi be a graded vector space. If (V, f) has the strong
Lefschetz property, then so does (V/ ker f, f). The top degree is d− 1. It follows that,
for any integer k > 0, (V/ ker fk, f) has the strong Lefschetz property. (The top degree
d− k.)

Proposition 8. Let V =
⊕d

i=0 Vi be a graded vector space and suppose that (V, f)
has the strong Lefschetz property. Suppose that g ∈ End(V ) is a degree k map and
fg = gf and rank(f i+k : V → V ) = rank(f ig : V → V ) for all i = 0, 1, . . .. Then
(V/(ker g), f) has the strong Lefschetz property.

It is possible to characterize the strong Lefschetz property in terms of the Lie algebra
sl(2) as follows:

Theorem 9. We assume that the ground field is of characteristic zero. TFAE

1. A graded vector space (V, f) has the strong Lefschetz property.

2. There exists a degree −1 map g ∈ End(V ) such that, if h = [f, g], then {f, g, h}
is an sl(2)-triple, and Vk is the eigenspace of h with eigenvalue 2k − d.

(Proctor [14] introduced the concept of sl(2)-poset to prove the Sperner property
for certain posets.) This characterization enables us to prove that the strong Lefschetz
property is preserved by taking a tensor product, which can be stated as follows:

Theorem 10. Suppose that

(
U =

c⊕
i=0

Ui, f

)
and

(
V =

d⊕
j=0

Vj, g

)
have the strong

Lefschetz property. Then the tensor product

(W = U ⊗K V, f ⊗ 1 + 1⊗ g)

has the strong Lefschetz property. The grading of W is given by

W =
c+d⊕
k=0

(⊕
i+j=k

Ui ⊗K Vj

)
.



3. Artinian Gorenstein algebras
We assume thatK is a field of characteristic zero. Let R = K[x1, x2, . . . , xn] =

⊕
i≥0Ri

be the polynomial ring. (We assume that the degrees of the variables are all 1.) For
g = g(x), f = f(x) ∈ R, we define “g ◦ f ∈ R”, an operation of g on R, as follows:

g ◦ f = g

(
∂

∂x1

,
∂

∂x2

, · · · , ∂

∂xn

)
f(x)

The following is known as the Double Annihilator Theorem of F. S. Macaulay.

Theorem 11. Let F ∈ Rd. We denote by Ann(F ) the annihilator of F :

Ann(F ) = {f ∈ R|f ◦ F = 0}.

Then Ann(F ) is an ideal in R and R/Ann(F ) is an Artinian Gorenstein algebra. Con-
versely if an Artinian algebra A = R/I is Gorenstein, then there exists F ∈ R such
that I = Ann(F ). For the time being, this may be thought of as the definition of a
graded Artinian Gorenstein algebra. F is called a Macaulay dual generator
of A. F is unique up to a scalar multiple. (See [13].)

By the definition of “◦”, R ◦ F is the graded vector space spanned by the partial
derivatives of F . (The top degree is the degree of F .)

Remark 12. Let F ∈ Rd. It is easy to prove that the graded vector spaces Rj ◦ F and
Rd−j ◦F have the same dimension. Thus R◦F has the symmetric Hilbert series. (This
can be proved without knowledge of Gorenstein algebras.)

For F ∈ Rd let V = R ◦ F =
⊕d

i=0(Rd−i ◦ F ), D = a1
∂

∂x1
+ · · · + an

∂
∂xn

, where
ai ∈ K. Then we have a pair (V,D) of a graded vector space V and a degree −1
endomorphism D. We regard V as a graded subspace of R. Similarly if l is a linear
form in R, then we have a pair (A,×l) of a graded vector space A = R/Ann(F ) and a
map ×l : A → A of degree one.

Definition 13. We say that a Gorenstein algebra A =
⊕d

i=0Ai has the strong Lef-
schetz property if there exists a linear form l ∈ R1 such that (A,×l) has the strong
Lefschetz property. I.e., ×ld−2i : Ai → Ad−i is bijective for i = 0, 1, . . . , [d/2]. Let F
be the Macaulay dual generator for A. Then this is equivalent to the strong Lefschetz
property of the pair (R ◦ F,D). Note D is a degree −1 map. We say that A has
the weak Lefschetz property if there exists a linear element l ∈ A1 such that the
multiplication ×l : Ai → Ai+1 is either injective or surjective for i = 0, 1, . . . , d− 1.

Suppose that we have an Artinian Gorenstein algebra R/I. Then I contains high
powers of all variables. Since ExtnR(R/I,R) ∼= R/I, it is possible to express I as

I = (xd1
1 , xd1

2 , . . . , xdn
n ) : g,

for some homogeneous form g ∈ R. Thus we can use Proposition 8 and Theorem 10 to
obtain the following result.

Theorem 14. Suppose that I = (xd1
1 , xd1

2 , . . . , xdn
n ) : g. If g is general enough, then

the algebra A = R/I has the strong Lefschetz property. Thus “almost all” Artinian
Gorenstein algebras have the strong Lefschetz property.

In the next section we exhibit Gorenstein algebras which fail to have the strong
Lefschetz property.



4. Higher Hessians, a criterion for the strong Lefschetz prop-
erty

Let R = K[x1, . . . , xn]. Suppose that A := R/I a Gorenstein algebra and let

h0, h1, . . . , hd

be the Hilbert series of A. Let F ∈ Rd be the Macaulay dual generator for A. Note
that h1 = hn−1 = n if and only if the partial derivatives Fx1 , . . . , Fxn are linearly
independent. We want to define the kth Hessian matrix. Assume that k ≤ [n/2]. Let
{α1, . . . , αN} ⊂ Rk be a set of monomials such that they are a basis for Ak (N =
dimK Ak = hk). We use the notation Fα := α ◦ F . (For example, Fx1x2 = ∂2

∂x1∂x2
F .)

We call

HesskF = (Fαiαj
)1≤i,j≤N

the kth Hessian matrix. As a matrix it depends on the set of monomials {αj} but
the vanishing of the determinant is independent of the choice of monomials. The
determinant of HesskF is denoted by hesskF . The first Hessian determinant is the same
as the Hessian in the normal sense if F involves properly n variables. Since hesskF
is a polynomial in x1, x2, . . . , xn, we sometimes write hesskF = hesskF (x1, x2, . . . , xn) as
necessary.

Theorem 15. . For a linear form l = a1x1 + a2x2 + · · · + anxn ∈ R, ai ∈ K to be a
Lefschetz element of A, it is necessary and sufficient that

hessk(a1, a2, . . . , an) ̸= 0, for k = 1, 2, . . . , [n/2].

Consequently the following conditions are equivalent. (See [10].)

1. R/Ann(F ) fails to have the strong Lefschetz property.

2. hesskF vanishes identically for some k.

To find a Gorenstein algebra which fails the SLP is the same as finding a homo-
geneous form such that one of higher Hessian determinants (including Hessian in the
normal sense) vanish identically. This problem goes back to Hesse’s claim made in
1850s. Otto Hesse claimed twice in 1851 and 1855, if the Hessian (in the normal sense)
vanishes identically, a variable can be eliminated by means of a linear transformation
of the variables. However this is not true. There is a counter example, a quinary cubic
due to Gordan and Noether. Nonetheless Hesse’s claim is true in 4 variables.

The following was proved by Gordan-Noether in [5]. See also [2], [18], [19].

Theorem 16. 1. If a homogeneous polynomial F ∈ C[w, x, y, z] has vanishing Hes-
sian (in the normal sense) then by a linear change of variables, F can be trans-
formed so that F ∈ C[x, y, z].

2. Suppose that a form F ∈ C[v, w, x, y, z] properly involves 5 variables. If the
Hessian (in the normal sense) vanishes identically, then by means of a linear
transformation of the variables F can be transformed so that F ∈ C[v, w][G],
where G = v2x+ vwy + w2z. (F is determined as a solution of a certain system
of linear partial differential equations.)



Recall that the unimodality of the Hilbert series is necessary for A to have the
strong Lefschetz property. R. Stanley constructed a Gorenstein algebra in 13 variables
which has Hilbert series (1 13 12 13 1). It was obtained as R/Ann(F ), where F =
M1x1 +M2x2 + · · · +M10x10 and where {M1, . . . ,M10} ⊂ C[u1, u2, u3]3 are the set of
all monomials of degree three.

Remark 17. If A =
⊕d

i=0 Ai has a non-unimodal Hilbert series, then A fails the SLP.
Examples of Gorenstein algebras with unimodal Hilbert series and failing the strong
Lefschetz property can be found in Gondim [4].

5. Some classes of Gorenstein algebras which can be proved to
have the strong Lefschetz property

As before we work on the polynomial ring R = K[x1, . . . , xn] and a graded Artinian
Gorenstein algebra A = R/I.

Definition 18. The dimension dimA1 is called the embedding dimension of a
Gorenstein algebra A.

Theorem 19. 1. Assume that char K = 0 or greater than the top degree. Goren-
stein algebras with embedding dimension 2 have the strong Lefschetz property.
(Iarrobino)

2. Assume that char K = 0. Complete intersections with embedding dimension 3
have the weak Lefschetz property. (Migliore-Nagel)

3. Assume that char K = 0. If A has embedding dimension 4, and top degree
d ≤ 4, then A has the strong Lefschetz property. This follows from the result
of Gordan-Noether. H. Ikeda [9] constructed a Gorenstein algebra in 4 variables
with top degree 5 which fails the strong Lefschetz property.

Conjecture 20. A = K[x1, x2, . . . , xn]/I, where I = (f1, f2, . . . , fn). Assume that
characteristic of K is zero or greater than the top degree. Then we conjecture that A
has the strong Lefschetz property.

Theorem 21 (Flat Extension Theorem). Suppose that A is a flat extension of B with
fiber C. Suppose that both B and C have the SLP. Then A has the SLP. (“SLP” is
used for “strong Lefschetz property.” )

Corollary 22. The SLP is preserved by a simple extension. I.e., if B has the SLP,
then A = B[z]/(zd+a1z

d−1+ · · ·+ad−1z+ad), with ai ∈ Ai, has the SLP. If l is a strong
Lefschetz element of B, then l + tz is a strong Lefschetz element of A for ∃t ∈ A1.

Example 23. Let A = R/(e1, e2, . . . , en), where ej is the elementary symmetric poly-
nomial of degree j. Then A has the SLP. (This is the cohomology ring of a flag variety
over C, so the hard Lefschetz theorem applies. The point here is that we can prove the
SLP of this algebra algebraically using the flat extension theorem.) If K = R, we have

a1x1 + a2x2 + . . .+ anxn is a Lefschetz element ⇔
∏
i<j

(ai − aj) ̸= 0.

(Generally speaking if A has the strong Lefschetz property, then a general linear form
is a Lefschetz element.)

Example 24. Let pk = xk
1 + xk

2 + · · ·+ xk
n. (So pk is the power sum of degree k.) Let

A = R/(pi, pi+1, . . . , pi+n−1). Then A has the SLP. (Use the flat extension theorem.)



6. Applications
6.1. The space of square-free monomials

A partition of a positive integer λ is a way to express it as a sum of positive integers:

λ = λ1 + λ2 + · · ·+ λd. (1)

Two partitions are regarded as the same if the components are the same up to per-
mutation. In this sense it is often denoted by a decreasing sequence of integers as
(λ1 ≥ λ2 ≥ · · · ≥ λd), λ =

∑
λj, but we use the expression (1) as well as the expres-

sion in the non-increasing order. In any case when we talk about the dual partition, we
have to arrange the terms in the decreasing order. Often Young diagrams of n boxes
are used to denote a partition of a positive integer n.

Note that the Hilbert series of an algebra A is a partition of the integer dimA. On
the other hand a nilpotent matrix L ∈ GL(A) decomposes into Jordan blocks over a
suitable vector space basis of A:

L = J1 ∔ J2 ∔ · · ·∔ Jr,

where Ji is a Jordan cell with diagonal entries zero and superdiagonal entries 1. Thus
the Jordan decomposition of a nilpotent matrix is determined by a partition of the size
of the matrix.

Remark 25. Suppose thatA =
⊕

Aj is a graded vector space, and L is a degree +1 map.
Then L is nilpotent. Suppose that L = L1∔L2∔ · · ·∔Lr is the Jordan decomposition.
Then L is a strong Lefschetz endomorphism of A if and only if |L| = |L1|+|L2|+· · ·+|Lr|
is the dual to the partition given by the Hilbert series of A. (|L| def

= size L.)

Example 26. Consider A = K[x, y, z]/(x2, y2, z2). Then A has the strong Lefschetz
property with Lefschetz element l = x + y + z. The Hilbert series of A is (1 3 3 1).
The Jordan decomposition of the endomorphism ×l : A → A is given by (4 2 2), the
dual to (1 3 3 1) = (3 3 1 1).

Let Sn be the symmetric group of n letters. It is well known that the isomorphism
types of irreducible representations of Sn are parametrized by the Young diagrams of n
boxes, which is in one-to-one correspondence with the partition of the integer n. Thus
it is possible to write V λ for an Sn-irreducible module corresponding to the partition
λ. “Specht polynomials” can be used to construct typical irreducible Sn-modules.

Example 27. Consider S4. There are 5 Young diagrams of 4 boxes. These are

λ = (4), (3 1), (2 2), (2 1 1), (1 1 1 1).

So there are 5 irreducible representations of S4. Vector spaces V
λ, as S4-modules can

be constructed as follows:

V (4) = ⟨1⟩
V (3 1) = ⟨x1 − x2, x1 − x3, x1 − x4⟩
V (2 2) = ⟨(x1 − x2)(x3 − x4), (x1 − x3)(x2 − x4)⟩
V (2 1 1) = ⟨(x1 − x2)(x1 − x3)(x2 − x3), (x1 − x2)(x1 − x4)(x2 − x4),

(x1 − x3)(x1 − x4)(x3 − x4)⟩

V (1 1 1 1) = ⟨
∏

1≤i<j≤4

(xi − xj)⟩

(Sn permutes the variables. ⟨∗ ∗ ∗⟩ denotes the vector space spanned by ∗ ∗ ∗.)



Let A = K[x1, . . . , xn]/(x
2
1, . . . , x

2
n). The set of square-free monomials can be a basis

for A. We look at A as an Sn-module and we want to decompose A into irreducible Sn-
modules. Since the SLP is preserved by tensor product, A has the SLP with l =

∑
xj as

a strong Lefschetz element. Since l is symmetric, A/lA is an Sn-module. Furthermore
if V ⊂ A is any irreducible homogeneous Sn-module, then the image lV is either 0 or
isomorphic to V itself as an Sn-module. Hence the decomposition of A as an Sn-module
is determined by the irreducible decomposition of A/lA.

Theorem 28. Let A = K[x1, . . . , xn]/(x
2
1, . . . , x

2
n). (Assume characteristic of K is 0.)

Then A/lA and A decompose as Sn-modules as follows (see [8]):

(1) The case n = 2m,

A/lA ∼= V (m, m) ⊕ V (m+1, m−1) ⊕ · · · ⊕ V (2m, 0)

A ∼= 1 · V (m, m) ⊕ 3 · V (m+1, m−1) ⊕ · · · ⊕ (2m+ 1) · V (2m, 0)

(2) The case n = 2m+ 1,

A/lA ∼= V (m+1, m) ⊕ V m+2, m−1) ⊕ · · · ⊕ V (2m+1, 0)

A ∼= 2 · V (m+1, m) ⊕ 4 · V (m+2, m−1) ⊕ · · · ⊕ 2(m+ 1) · V (2m+1, 0)

6.2. The monomial complete intersections of uniform degree

Let W be an Sn-module. Let Y λ(−) be the Young symmetrizer corresponding to
the Young diagram λ of n boxes. We may regard Y λ(W ) as the functor to “extract
the isotypic component of W ,” consisting of all irreducible modules each of which is
isomorphic to Uλ. (We write Uλ for the isomorphism type of Sn-module corresponding
to λ.) Thus it is possible to write

W =
⊕
|λ|=n

Y λ(W ).

Let W =
(
Kd
)⊗n

be the n-fold tensor of Kd. Y λ(W ) is a direct sum of copies
of Uλ. So Y λ(W ) is known if we know the multiplicity of Uλ. The multiplicity is in
fact equal to the dimension of the irreducible GL(n)-module Vλ. We have the tensor
representation of the general linear group

ϕ : GL(d) → GL(W ).

According to the Schur-Weyl duality, ϕ decomposes into the direct product of

ϕλ : GL(d) → GL(Y λ(W )),

where λ runs over the partitions of n with at most d parts. Furthermore we have

Y λ(W ) = Uλ ⊗ Vλ,

where Uλ is the irreducible Sn-module and Vλ is the irreducible GL(d)-module deter-
mined by λ.

Next we want to see what happens if we identify W =
(
Kd
)⊗n

with the Artinian
Gorenstein algebra

A(d) := C[x1, x2, . . . , xn]/(x
d
1, x

d
2, . . . , x

d
n).

For a positive integer m, we use the notation [m]q for the polynomial

[m]q =
1− qm

1− q
= 1 + q + · · ·+ qm−1.



Theorem 29. Let λ = (λ1, . . . , λd), n =
∑d

j=1, λj, λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0. The

Hilbert series of Y λ(A(d)) is given by

(dimUλ)q
λ2+2λ3+···+(d−1)λd

∏
1≤i<j≤d

[λi − λj + j − i]q
[j − i]q

.

The graded vector space Y λ(A(d)) has the strong Lefschetz property with x1+ · · ·+xn

as a strong Lefschetz element. (For details see [7] Chapter 9, [12].)

Corollary 30. (We use the same notation as above.) Let ϕλ : GL(d) → GL(Vλ)
be the irreducible representation of the general linear group. Let M ∈ GL(d) be the
Jordan matrix with a single eigenvalue a (with superdiagonal entries 1.) Then ϕλ(M)
has single eigenvalue an and the decomposition into Jordan cells is given as the dual
partition to the Hilbert series ∏

1≤i<j≤d

[λi − λj + j − i]q
[j − i]q

.

(Note that this is a polynomial in q. The sum of the coefficients of q is equal to the
dimension of Vλ. Thus this is regarded as a partition of the integer dimVλ.)

Remark 31. It is known that the tensor space (Kd)⊗n decomposes into irreducible
GL(d)-modules, and these modules are parametrized by the partitions of n with at
most d parts. Let Vλ be the irreducible GL(d)-module corresponding to the partition
λ of n with at most d parts. Then the Weyl dimension formula says that

dimVλ =
∏

1≤i<j≤d

λi − λj + j − i

j − i
,

where λ = (λ1, λ2, . . . , λd), λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0,
∑d

j=1 λj = n. The polynomial

h(q) :=
∏

1≤i<j≤d
[λi−λj+j−i]q

[j−i]q
is called the q-analog of the Weyl dimension formula.

That Y λ(A(d)) has the strong Lefschetz property shows that the coefficients of the
polynomial h(q) is a symmetric unimodal sequence of integers.

6.3. The ring of invariants of Artinian algebras by a reflection group

With the identification(
Kd
)⊗n ∼= A := K[x1, . . . , xn]/(x

d
1, . . . , x

d
n),

the subspace of the LHS spanned by the symmetric tensors corresponds to the ring of
invariants of A by the symmetric group Sn. The ring of invariants A

Sn can be described
as follows:

ASn = K[e1, e2, . . . , en]/(pd, pd+1, . . . , pd+n−1),

where pj =
∑n

i=1 x
j
i , the power sum symmetric polynomial of degree j. It is implied that

the set of n symmetric power sums of consecutive degrees is a complete intersection.

Remark 32. The following conditions are equivalent.

1. K[x1, x2, . . . , xn]/(pd, pd+1, . . . , pd+n−1) is Artinian.

2. K[p1, p2, . . . , pn]/(K[p1, p2 · · · , pn] ∩ (pd, pd+1, . . . , pd+n−1)) is Artinian.



This raises the following intriguing problem:

Problem 33. For which n-sets of integers {i1, i2, · · · , in} is the algebra
R/(pi1 , pi2 , . . . , pin) Artinian? The same question can be asked for complete symmet-
ric polynomials. (The complete symmetric polynomial of degree j is the sum of all
monomials of degree j.)

In the special case when n = 3 of the above problem, we have the following conjec-
tures.

Conjecture 34. Let R = K[x, y, z] be the polynomial ring in 3 variables over a field
K. Let pj, hj ∈ Rj be the power sum and complete symmetric polynomial of degree j
respectively. Let A = {a, b, c} be a set of integers with a < b < c.

1. Assume gcd(a, b, c) = 1. Then R/(pa, pb, pc) is Artinian if and only if abc ≡
0 mod 6.

2. R/(ha, hb, hc) is Artinian if and only if (i) abc ≡ 0 mod 6, (ii) gcd(a+1, b+1, c+
1) ≡ 1 and (iii) for all t ∈ N with t > 2, there exists d ∈ {a, b, c} such that
d+ 2 ̸≡ 0, 1 mod t.

Conca, Krattenthaler and Watanabe wrote these conjectures in [1]. This problem
has a very broad generalization for sequences of polynomials defined by the same
recursive formula as the power sums and complete symmetric polynomials: pd+1 =∑n

k=1(−1)k−1pd−k+1ek and hd+1 =
∑n

k=1(−1)k−1hd−k+1ek. Moreover it is related to the
famous theorem called the Skolem-Mahler-Lech Theorem. See [3].

Problem 35. The above Conjecture 34 is not easy even in the case a = 1. Then
the problem asks, in the power sum case, for which integers b, c is the ideal (x + y +
z, xb + yb + zb, xc + yc + zc) a complete intersection in K[x, y, z]. Since there is a linear
form in the generators, it decreases the number of variables by 1. Furthermore we can
dehomogenize the generators. This also decreases the number of variables by 1. So
the problem is actually a problem in the polynomial ring in one variable. The problem
reduces as follows: In the polynomial ring K[t] in one variable, the two polynomials

tb + 1 + (−1− t)b, tc + 1 + (−1− t)c

do not have a common factor if and only if bc ≡ 0 mod 6. Furthermore one can
conjecture that the polynomial (1 + t)n + 1+ tn is irreducible over the field of rational
numbers if n is a multiple of 6. I asked some number theorists about this problem, but
we have not found a proof or a counter example.

Problem 36. In the following problems we are concerned with Artinian Gorenstein
algebras and its Macaulay dual generator in the polynomial ring R = K[x1, . . . , xn].
Assume that the characteristic of K is zero or greater than the top degree.

1. Suppose that a homogeneous form F is a symmetric polynomial (in the sense it is
an invariant of the symmetric group). Prove that A = R/Ann(F ) has the strong
Lefschetz property.

2. Suppose that a homogeneous form F is an alternate polynomial (in the sense it
is a semi-invariant of the symmetric group Sn.) Prove that A = R/Ann(F ) has
the strong Lefschetz property.



3. Suppose that I = (f1, . . . , fn) is a homogeneous complete intersection in n vari-
ables. Suppose Sn acts on the polynomial ring K[x1, . . . , xn] and it permutes
the polynomials f1, . . . , fn in the same way it permutes the variables x1, . . . , xn.
Prove that A = R/I has the strong Lefschetz property.

4. Suppose that F is a homogeneous form in three variables. Prove that A =
R/Ann(F ) has the strong Lefschetz property.

We can look at Conjecture 34 from a different viewpoint as follows:

Problem 37. Let R be the polynomial ring in n variables.

(1) Suppose that an infinite sequence u0, u1, . . . , is defined by linear recurrence rela-
tion:

uk = α1uk−1 + α2uk−2 + · · ·+ αnuk−n,

where αi ∈ Ri. (We can choose u0, u1 . . . , un−1 and α1, α3, . . . , αn arbitrarily.)

For what n-sets {i1, i2, . . . , in} ⊂ N, is the algebra R/(ui1 , ui2 , . . . , , uin) Artinian?

(2) Let n = 3, R = K[x, y, z], α1 = x+y+z, α2 = −(xy+xz+yz), α3 = xyz. Define
uk by the linear recurrence relation:

uk = α1uk−1 + α2uk−2 + α3uk−3.

For which initial polynomials (u0, u1, u2) ∈ R0 ×R1 ×R2, is it true that

R/(ua, ub, uc) is Artinian ⇔ gcd(abc/g3) ≡ 0 mod 6, where gcd(a, b, c) = g.

(3) With the same n and R, for which initial polynomials u0, u1, u2 ∈ R0 ×R1 ×R2,
is it true that

R/(ua, ub, uc) is Artinian ⇔


gcd(a, b, c) ≡ 0 mod 6,
gcd(a+ 1, b+ 1, c+ 1) = 1,
there exists d such that d+ 2 ̸≡ 0 mod t.
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