Set-theoretic reflection principles

Sakaé Fuchino (Kobe University)*

For a class \mathcal{C} of structures (with a fixed notion \mathcal{N} of substructure) and a property \mathcal{P} , the reflection cardinal of $(\mathcal{C}, \mathcal{P})$ is the minimal cardinal κ such that, for any $M \in \mathcal{C}$ of cardinality $> \kappa$, if M does not satisfies the property P, then there are stationarily many substructures N of M of cardinality $< \kappa$. If κ is the reflection cardinal of $(\mathcal{C}, \mathcal{N})$, we shall write $\kappa = \mathfrak{Refl}(\mathcal{C}, \mathcal{P})$.

By choosing \mathcal{C} , \mathcal{N} and \mathcal{P} , we can represent many set-theoretic reflection statements. If, for example \mathcal{P} is simply a contradiction, and \mathcal{N} is the elementary submodel relation for some logic \mathcal{L} , then $\kappa = \mathfrak{Refl}(\mathcal{C}, \mathcal{P})$ is the strong form of Downward Löwenheim-Skolem Theorem down to $< \kappa$ for \mathcal{L} (i.e. the assertion: for any structure \mathfrak{A} of cardinality $\geq \kappa$ there are stationarily many \mathcal{L} -elementary substructures of \mathfrak{A} of cardinality $< \kappa$).

Of these reflection statements, the cases $\aleph_2 = \Re \mathfrak{efl}(\mathcal{C}, \mathcal{P})$ and $2^{\aleph_0} = \Re \mathfrak{efl}(\mathcal{C}, \mathcal{P})$ seems to be of special interest. The former may be interpreted as a pronouncement that the first uncountable cardinal \aleph_1 captures the situation $\neg \mathcal{P}$ good enough while the latter as the pronouncement that the continuum is large enough in connection with the property \mathcal{P} .

For example, if we denote with \mathcal{L}_{stat} the weak second-order logic (where the second order quantifiers run over countable infinite subsets of the underlying set of a structure) together with the stationarity quantifier (i.e. $stat X \varphi$ is to be interpreted as "there are stationarily many X such that φ "), if \mathcal{C}^* denotes the class of all structures with the elementary submodel relation in \mathcal{L}_{stat} as the notion of substructure, then the assertion $\aleph_2 = \mathfrak{Refl}(\mathcal{C}^*, \exists x \ (x \neq x))$ is just the strong Löwenheim-Skolem theorem for the logic \mathcal{L}_{stat} (i.e. the statement: for every uncountable structure \mathfrak{A} there are stationarily many \mathcal{L}_{stat} -elementary substructures of \mathfrak{A} of cardinality \aleph_1). It is easy to see that this reflection principle (even without the stationarity quantifier) implies the Continuum Hypothesis.

As the example above, stronger assertions among the reflection principles of the form $\aleph_2 = \mathfrak{Refl}(\mathcal{C}, \mathcal{P})$ imply the Continuum Hypothesis (see also [6]) while assertions of the form $2^{\aleph_0} = \mathfrak{Refl}(\mathcal{C}, \mathcal{P})$ tend to imply that the continuum is extremely large (see [1]).

Most of the natural assertions of the form $\aleph_2 = \mathfrak{Refl}(\mathcal{C}, \mathcal{P})$ or $2^{\aleph_0} = \mathfrak{Refl}(\mathcal{C}, \mathcal{P})$ involves some kind of countability in the property \mathcal{P} .

This is the case with the reflection assertion $\aleph_2 = \mathfrak{Refl}(\mathcal{C}_0, \mathcal{P}_0)$ where \mathcal{C}_0 is the class of all graphs with induced subgraphs as the notion of substructure and \mathcal{P}_0 is the property "of countable coloring number". It is shown that this assertion is equivalent to the Fodor-type Reflection Principle (FRP). Using a characterization of coloring number being less than a regular cardinal, it is easy to show that the strong Löwenheim-Skolem theorem $\aleph_2 = \mathfrak{Refl}(\mathcal{C}^*, \exists x \ (x \neq x))$ above implies $\aleph_2 = \mathfrak{Refl}(\mathcal{C}_0, \mathcal{P}_0)$ (see also [5]).

²⁰¹⁰ Mathematics Subject Classification: 03E35, 03E35, 03E35.

Keywords: reflection principles, Cintinuum Hypothesis.

^{*}e-mail: fuchino@diamond.kobe-u.ac.jp

web: http://fuchino.ddo.jp/

We can also consider the reflection number for the property obtained from these properties of countable character by replacing the countability by of cardinality κ . The reflection assertion for the property "of coloring number $< \kappa$ " for regular $\kappa > \aleph_1$ is also equivalent to a higher cardinal version of FRP but it appeared that the straightforward generalization of the FRP does not work for this purpose ([3], [4]).

In this talk we will give a survey on recent results in connection with reflection statements including those mentioned above.

References

- Sakaé Fuchino, On reflection numbers under large continuum, RIMS Kôkyûroku, No.1988, 1–16, (2016).
- [2] Sakaé Fuchino, On local reflection of the properties of graphs with uncountable characteristics, RIMS Kôkyûroku, No.2042, (2017), 34–51.
- [3] Sakaé Fuchino, André Ottenbreit-Maschio-Rodrigues and Hiroshi Sakai, on higher cardinal versions of Fodor-type Reflection Principle, in preparation.
- [4] Sakaé Fuchino, André Ottenbreit-Maschio-Rodrigues and Hiroshi Sakai, A higher cardinal version of the Fodor-type Reflection Principle characterizing the reflection of large coloring number, in preparation.
- [5] Sakaé Fuchino, André Ottenbreit-Maschio-Rodrigues and Hiroshi Sakai, Strong Löwenheim-Skolem theorems as reflection principles, in preparation.
- [6] Bernhard König, Generic compactness reformulated, Archive for Mathematical Logic 43, 311326 (2004).