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1. Introduction

A graph is a pair G = (V,E), where V is a non-empty set of vertices and E a set of
edges, namely, a set of unordered pairs of distinct vertices. Our main concern is spectral
analysis of graphs, in particular, the asymptotic spectral distributions of the adjacency
matrices of growing graphs. Here by growing graphs we mean a sequence of graphs
G1 ⊂ G2 ⊂ · · · with the number of vertices going to the infinity. Typically, growing
graphs are obtained from repeated application of a graph product or from an infinite
family of parametrized graphs. The purpose of this note is to demonstrate how the
ideas of quantum (noncommutative) probability theory is applied to such problems. In
fact, we focus on (i) the method of quantum decomposition, and (ii) the use of various
concepts of independence. Then asymptotic spectral distributions are derived along
with quantum (noncommutative) version of the central limit theorem.

This note is based on the recent publication Obata [52], see also Hora–Obata [30].
The root of quantum probability traces back to von Neumann [58]. For relevant dis-
cussion and current trends see Accardi–Lu–Volovich [3], Meyer [41] and Parthasarathy
[53]. For free probability see Nica–Speicher [44], Speicher [55] and Voiculescu [57].

2. Algebraic random variables and spectral distributions

Definition 2.1. Let A be a unital ∗-algebra over the complex number field C with the
multiplication unit 1A. A function φ : A → C is called a state on A if

(i) φ is linear; (ii) φ(a∗a) ≥ 0; (iii) φ(1A) = 1.

The pair (A, φ) is called an algebraic probability space.

Definition 2.2. Let (A, φ) be an algebraic probability space. An element a ∈ A is
called an algebraic random variable or a random variable for short. A random variable
a ∈ A is called real if a = a∗.

For a ∈ A the quantity of the form: φ(aϵ1aϵ2 · · · aϵm), ϵ1, ϵ2, . . . , ϵm ∈ {1, ∗}, is called
a mixed moment of order m. For a real random variable a = a∗ the mixed moments
are reduced to the moment sequence:

φ(am), m = 0, 1, 2, . . . ,

where φ(am) is called the mth moment of a. By definition φ(a0) = 1.

Definition 2.3. We say that two algebraic random variables a in (A, φ) and b in (B, ψ)
are moment equivalent and write

a
m
= b
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if all of their mixed moments coincide. Two real random variables a = a∗ and b = b∗

are moment equivalent, i.e., a
m
= b if their moment sequences coincide:

φ(am) = ψ(bm) for all m ≥ 0.

Let Pfm(R) denote the set of all probability measures having finite moments of all
orders. The mth moment of µ ∈ Pfm(R) is defined by

Mm(µ) =

∫
R
xmµ(dx), m ≥ 0.

By definition M0(µ) = 1.

Theorem 2.4. Let (A, φ) be an algebraic probability space. For a real random variable
a = a∗ ∈ A there exists a probability measure µ ∈ Pfm(R) such that

φ(am) =

∫ +∞

−∞
xmµ(dx) =Mm(µ), m ≥ 0. (2.1)

In fact, the existence of such a probability measure µ follows from the Hamburger
theorem [19]. Note that µ is not uniquely determined in general. It is uniquely deter-
mined if and only if µ ∈ Pfm(R) is the solution to a determinate moment problem.

Definition 2.5. A probability measure µ satisfying (2.1) is called the spectral distri-
bution of a in φ.

3. Interacting Fock spaces and quantum decomposition

Definition 3.1. A pair of finite or infinite sequences ({ωn}, {αn}) are called Jacobi
coefficients if one of the following conditions is fulfilled:

(i) [infinite type] both are infinite sequences such that ωn > 0 and αn ∈ R for all
n ≥ 1,

(ii) [finite type] both are finite sequences of the form ({ωn}d−1
n=1, {αn}dn=1), where ωn >

0, αn ∈ R and d ≥ 1. (For d = 1 we understand that {ωn} is an empty sequence.)

Let J denote the set of such Jacobi coefficients.

With Jacobi coefficients ({ωn}, {αn}) ∈ J we associate a Hilbert space Γ with
complete orthonormal basis {Φn} and three linear operators B+, B−, B◦ defined by

B+Φn =
√
ωn+1Φn+1, n ≥ 0, (3.1)

B−Φ0 = 0; B−Φn =
√
ωnΦn−1, n ≥ 1, (3.2)

B◦Φn = αn+1Φn, n ≥ 0. (3.3)

These actions are illustrated in Figure 1. If the Jacobi coefficients are of infinite type,
we have dimΓ = ∞. If it is of finite type, say ({ωn}d−1

n=1, {αn}dn=1), we have dimΓ = d
and set B+Φd−1 = 0.

Definition 3.2. The quintuple (Γ, {Φn}, B+, B−, B◦) obtained as above is called an
interaction Fock space associated with Jacobi coefficients ({ωn}, {αn}) ∈ J. The oper-
ators B+, B− and B◦ are called the creation, annihilation and conservation operators,
respectively. When αn ≡ 0 we omit to refer to B◦ = 0.
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Figure 1: The actions of B+, B−, B◦

Let Γ0 be a linear space spanned by {Φn} and L(Γ0) denote the space of all lin-
ear operators on Γ0 whose adjoint operators, restricted to Γ0, are linear operators
on Γ0. Then L(Γ0) becomes a unital ∗-algebra in a natural manner. By definition
B+, B−, B◦ ∈ L(Γ0) and we have

(B+)∗ = B−, (B−)∗ = B+, (B◦)∗ = B◦.

Since B−B+Φn = ωn+1Φn and B+B−Φn = ωnΦn for n ≥ 0, where we understand that
ω0 = 0, it is convenient to write

B−B+ = ωN+1 , B+B− = ωN , [B−, B+] = ωN+1 − ωN ,

where N is the number operator defined by NΦn = nΦn.
Equipped with the vector state Φ0, called the vacuum state, (L(Γ0),Φ0) becomes an

algebraic probability space, where B+, B− and B◦ are regarded as random variables.
In particular, the real random variable B+ + B− + B◦ is important. Recall that the
spectral distribution is a probability measure µ satisfying

⟨Φ0, (B
+ +B− +B◦)mΦ0⟩ =

∫
R
xmµ(dx), m ≥ 0. (3.4)

Theorem 3.3. Let (Γ, {Φn}, B+, B−, B◦) be the interacting Fock space associated with
({ωn}, {αn}) ∈ J. Then the vacuum spectral distribution of B+ + B− + B◦ coincides
with the orthogonalizing probability measure for the polynomials {Pn(x)} defined by

P0(x) = 1, P1(x) = x− α1, (3.5)

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), n ≥ 1. (3.6)

The essential step is to show that the linear operator B++B−+B◦ intertwines with
the multiplication operator by x through the isometry U : Γ0 → L2(R, µ) determined
by the correspondence Φn ↔ Pn(x)/∥Pn∥. The proof requires some basic properties of
the orthogonal polynomials as well.

Theorem 3.4. Let a = a∗ be a real random variable in an algebraic probability space
(A, φ). Then there exist unique Jacobi coefficients ({ωn}, {αn}) ∈ J such that, letting
(Γ, {Φn}, B+, B−, B◦) be the associated interacting Fock space, we have

φ(am) = ⟨Φ0, (B
+ +B◦ +B−)mΦ0⟩, m ≥ 0. (3.7)

From (3.7) we obtain
a

m
= B+ +B◦ +B−, (3.8)

which is called the quantum decomposition of a random variable a = a∗.



Example 3.5 (Boson Fock space). This is the interacting Fock space associated with
Jacobi coefficients ({ωn = n}, {αn ≡ 0}). The canonical commutation relation (CCR)
holds:

[B−, B+] = B−B+ −B+B− = I. (3.9)

The vacuum spectral distribution of B+ + B− is the standard normal (Gaussian) dis-
tribution, i.e.,

⟨Φ0, (B
+ +B−)mΦ0⟩ =

1√
2π

∫ +∞

−∞
xme−x2/2dx, m ≥ 0. (3.10)

Example 3.6 (Free Fock space). This is the interacting Fock space associated with
Jacobi coefficients ({ωn ≡ 1}, {αn ≡ 0}). The free commutation relation holds:

B−B+ = I. (3.11)

The vacuum spectral distribution of B++B− is the normalized Wigner semicircle law,
i.e.,

⟨Φ0, (B
+ +B−)mΦ0⟩ =

1

2π

∫ +2

−2

xm
√
4− x2 dx, m ≥ 0. (3.12)

Example 3.7 (Fermion Fock space). This is the interacting Fock space associated with
Jacobi coefficients ({ω1 = 1}, {α1 = α2 = 0}). The anti-commutation relation holds:

B−B+ +B+B− = I. (3.13)

Identifying Γ0 with C2, we obtain matrix notation:

Φ0 =

[
0
1

]
, Φ1 =

[
1
0

]
, B+ =

[
0 1
0 0

]
, B− =

[
0 0
1 0

]
. (3.14)

The vacuum spectral distribution of B+ +B− is the Bernoulli distribution with mean
0 and variance 1, i.e.,

⟨Φ0, (B
+ +B−)mΦ0⟩ =

∫
R
xmµB(dx), µB =

1

2
(δ+1 + δ−1), m ≥ 0. (3.15)

4. Quantum decomposition of classical random variables

Let (Ω,F , P ) be a (classical) probability space and consider the set of all C-valued
random variables having finite moments of all orders, i.e.,

L∞−(Ω,F , P ) =
∩

1≤p<∞

Lp(Ω,F , P )

Equipped with the usual pointwise operations, L∞−(Ω,F , P ) becomes a unital ∗-
algebra. Moreover, equipped with the expectation

E[X] =

∫
Ω

X(ω)P (dω), X ∈ L∞−(Ω,F , P ),

(L∞−(Ω,F , P ),E) becomes an algebraic probability space.
Let X be a R-valued random variable in L∞−(Ω,F , P ) and µX the probability

distribution of X. From the obvious relation

E[Xm] =

∫
Ω

X(ω)mP (dω) =

∫
R
xmµX(dx) =Mm(µX)

we see that the spectral distribution of X in the sense of the algebraic random variable
is nothing else but the probability distribution of X.



Example 4.1. The coin toss is modelled by a classical random variable X defined by
P (X = 1) = P (X = −1) = 1/2. It follows from Example 3.7 that

X
m
= B+ +B−, (4.1)

where B+ and B− are the Fermion creation and annihilation operators. Moreover,
(4.1) gives rise to the quantum decomposition of X.

Example 4.2. Let X be a classical random variable obeying the standard normal
distribution. We then see from Example 3.5 that

X
m
= B+ +B−, (4.2)

where B+ and B− are the Boson creation and annihilation operators. Moreover, (4.2)
gives rise to the quantum decomposition of X.

Example 4.3. Let (Γ, {Φn}, B+, B−) be the Boson Fock space. Then the vacuum
distribution of (B+ +

√
λ)(B− +

√
λ) coincides with the Poisson distribution with

parameter λ > 0. Since

(B+ +
√
λ)(B− +

√
λ) = N +

√
λ(B+ +B−) + λ,

where N = B+B− is the number operator, the Jacobi coefficients of the Poisson dis-
tribution with parameter λ are given by

ωn = λn, αn = n− 1 + λ, n ≥ 1.

Example 4.4. A parallel argument is applied to the free Fock space (Γ, {Φn}, B+, B−).
For λ > 0 the vacuum spectral distribution of (B+ +

√
λ)(B− +

√
λ) is a unique

probability measure determined by Jacobi coefficients ({ωn ≡ λ}, {α1 = λ, α2 = α3 =
· · · = λ + 1}). It is called the free Poisson distribution or the Marchenko–Pastur
distribution with parameter λ. In fact, the free Poisson distribution is obtained from
the free Meixner distribution by affine transformation. For more details see e.g., Hiai–
Petz [24], Hora–Obata [30], Nica–Speicher [44].

In general, a classical random variable having finite moments of all orders admits
the quantum decomposition:

X
m
= B+ +B◦ +B−. (4.3)

In fact, the Jacobi coefficients ({ωn}, {αn}) are first obtained from the probability
distribution of X using the three-term recurrence relation. Then we take the associated
interacting Fock space which gives rise to (4.3). The quantum decomposition makes
us possible to study “non-commutative structure” of a random variable a = a∗, in
particular, of a classical random variable X.

The commutators [B−, B+], [B◦, B+] and [B◦, B−] are determined by the Jacobi
coefficients ({ωn}, {αn}). Since a probability measure µ ∈ Pfm(R) is determined by
the Jacobi coefficients ({ωn}, {αn}) (in the sense of moments), so is by the commutators
[B−, B+], [B◦, B+], [B◦, B−]. There are some attempts to classify probability measures
in terms of (Lie) algebraic structure of interacting Fock spaces.



5. Spectral Distributions of Graphs

Definition 5.1. A graph is a pair G = (V,E), where V is a non-empty set of vertices
and E a set of edges, namely, a set of unordered pairs of distinct vertices. We say that
two vertices x, y ∈ V are adjacent if {x, y} ∈ E. In this case we also write x ∼ y. A
graph G = (V,E) is called finite if V is a finite set.

The degree of a vertex x ∈ V is defined by

deg(x) = degG(x) = |{y ∈ V ; y ∼ x}|.

A graph G is called locally finite if deg(x) < ∞ for all x ∈ V . In this note a graph is
always assumed to be locally finite.

Definition 5.2. The adjacency matrix of a graph G = (V,E) is a matrix A = A[G]
with index set V × V defined by

(A)xy =

{
1, if x ∼ y,

0, otherwise.

Let A(G) be the set of all polynomials in A with complex coefficients, which becomes
a unital ∗-algebra in a natural manner and is called the adjacency algebra of G.

Once a state φ is given on A(G), we regard the adjacency matrix A = A∗ as a real
random variable of the algebraic probability space (A(G), φ). Then by Theorem 2.4
there exists a probability measure µ ∈ Pfm(R) such that

φ(Am) =Mm(µ) =

∫
R
xmµ(dx), m ≥ 0.

We call µ the spectral distribution of A in the state φ.

Normalized trace. Let G = (V,E) be a finite graph. The normalized trace is
defined by

φtr(a) =
1

|V |
Tr a =

1

|V |
∑
x∈V

(a)xx =
1

|V |
∑
x∈V

⟨ex, aex⟩, a ∈ A(G),

where {ex ; x ∈ V } is the canonical basis. The spectral distribution of A in φtr coincides
with the eigenvalue distribution of G, which is defined by

µ =
1

|V |

s∑
i=1

miδλi
, Spec (G) =

(
λ1 λ2 . . . λs
m1 m2 . . . ms

)
.

Vacuum state at a vertex. Suppose we are given a distinguished vertex o ∈ V .
The vacuum state at o is defined by

⟨a⟩o = ⟨eo, aeo⟩ = (a)oo , a ∈ A(G).

Let µ be the spectral distribution of the adjacency matrix A in the vacuum state ⟨·⟩o.
Then we have

Mm(µ) =

∫
R
xmµ(dx) = ⟨Am⟩o = Wm(o, o;G), m ≥ 0, (5.1)

where Wm(x, y;G) = (Am)xy = ⟨ex, Amey⟩ denotes the number of m-step walks con-
necting x and y.



6. Fock spaces associated with graphs

Let G = (V,E) be a connected graph with a distinguished vertex o ∈ V . We set

Vn = {x ∈ V ; ∂(x, o) = n}, n ≥ 0. (6.1)

Obviously, V0 = {o}, V1 = {x ∈ V ; x ∼ o}, and Vm ∩ Vn = ∅ for m ̸= n. Thus, we
obtain a partition of V :

V =
∪
n

Vn , (6.2)

which is called the stratification of G with respect to o ∈ V .
Associated to (6.1) we define Φn ∈ C0(V ) by

Φn =
1√
|Vn|

∑
x∈Vn

ex , n ≥ 0.

Here we note that |Vn| <∞ by local finiteness. By definition, Φ0 = eo and ⟨Φm,Φn⟩ =
δmn. Let Γ0 denote the subspace of C0(V ) spanned by {Φn}. The Hilbert space obtained
by completing Γ0 is called the Fock space associated with a rooted graph (G; o) and is
denoted by Γ(G; o). By construction, {Φn} form an orthonormal basis of Γ(G; o).

Vn+1VnVn-1V1V0

n+1nn-110 FFFFFG (G):

V : 

Figure 2: Stratification and Fock space

For ϵ ∈ {+,−, ◦} and x ∈ V we set

ωϵ(x) = {y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ϵ}, (6.3)

where the symbols +,−, ◦ correspond respectively to the numbers +1,−1, 0. We define
three matrices A+, A◦, A− by

(Aϵ)yx =

{
1, if y ∈ ωϵ(x),

0, otherwise,
ϵ ∈ {+,−, ◦},

or equivalently,

Aϵex =
∑

y∈ωϵ(x)

ey , x ∈ V. (6.4)

Then we have the quantum decomposition of the adjacency matrix:

A = A+ + A− + A◦. (6.5)

Note that
(A+)∗ = A−, (A−)∗ = A+, (A◦)∗ = A◦. (6.6)



Theorem 6.1. Let G be a connected graph with a distinguished vertex o ∈ V . Let
Γ(G; o) be the associated Fock space and A = A+ + A− + A◦ the quantum decomposi-
tion of the adjacency matrix A. If Γ(G; o) is invariant under the actions of Aϵ, then
(Γ(G; o), {Φn}, A+, A−, A◦) is an interacting Fock space associated with Jacobi coeffi-
cients ({ωn}, {αn}) defined by

ωn =
|Vn|
|Vn−1|

|ω−(x)|2, x ∈ Vn ; αn = |ω◦(x)|, x ∈ Vn−1 , (6.7)

for n ≥ 1, where the right-hand sides are independent of the choice of x.

Corollary 6.2. Notations and assumptions being the same as in Theorem 6.1, the
spectral distribution of A in the vacuum state at o ∈ V is a probability measure with
Jacobi coefficients ({ωn}, {αn}) defined in (6.7).

7. Distance-Regular Graphs

There is an interesting family of graphs for which Γ(G; o) is invariant under the actions
of Aϵ. In fact, distance-regular graphs are closely related to orthogonal polynomials.

Definition 7.1. A connected graph G = (V,E) is called distance-regular if for any
i, j, k ∈ {0, 1, 2, . . . }, the number

pkij = |{z ∈ V ; ∂(z, x) = i, ∂(y, z) = j}|

is independent of the choice of x, y ∈ V with ∂(x, y) = k. The numbers {pkij} are called
the intersection numbers of a distance-regular graph G.

Definition 7.2. Picking up a subset of {pkij}, we define

an = pn1n , bn = pn1n+1 cn = pn1n−1 , n ≥ 0, (7.1)

where c0 = 0 by definition. For a finite distance-regular graph G with d = diam (G),
the array {cn}

{an}
{bn}

 =

c0 c1 c2 · · · cd
a0 a1 a2 · · · ad
b0 b1 b2 · · · bd


is called the intersection array of G. If G is infinite, the array becomes infinite.

A distance-regular graph is regular with degree b0 = p011. Therefore, an+bn+cn = b0
for all n ≥ 0. In particular, a0 = c0 = 0. Since an + bn + cn = b0 is constant, the row
of a0, a1, . . . in the intersection array is often omitted.

Theorem 7.3. Let G be a distance-regular graph and ({cn}, {an}, {bn}) the intersection
array. Choosing a root o ∈ V , let Γ = Γ(G, o) be the associated Fock space with basis
{Φ0 = eo,Φ1,Φ2, . . . } and A = A+ + A− + A◦ the quantum decomposition of the
adjacency matrix. Then (Γ, {Φn}, A+, A−, A◦) is an interacting Fock space associated
with Jacobi coefficients ({ωn}, {αn}) given by

ωn = bn−1cn , αn = an−1, n ≥ 1. (7.2)

In particular, the above Jacobi coefficients are independent of the choice of o ∈ V .

It is easily verified that the normalized trace φtr and the vacuum state at any vertex
coincide on the adjacency algebra A(G) of a distance-regular graph.



8. Asymptotic spectral distributions

8.1. Growing distance-regular graphs in general

Let G(ν) be growing distance-regular graphs and ({cn(ν)}, {an(ν)}, {bn(ν)}) their in-
tersection arrays. For each ν we have the quantum decomposition of the adjacency
matrix

Aν = A+
ν + A−

ν + A◦
ν

and we have the interacting Fock space (Γν , {Φ(ν)
n }, A+

ν , A
−
ν , A

◦
ν) associated with Jacobi

coefficients

ωn(ν) = bn−1(ν)cn(ν) , αn(ν) = an−1(ν), n ≥ 1. (8.1)

In general, ωn(ν) diverges as ν → ∞. But, taking a suitable scaling limit, we may hope
to get reasonable limits ({ωn}, {αn}) from which we obtain the asymptotic spectral
distribution of the growing graphs. This program can be performed. Before mentioning
the main result, we need to prepare a notion of convergence.

Definition 8.1. For each n ≥ 1 let (An, φn) be an algebraic probability space and
(an,1, . . . , an,d) be a d-dimensional random vector, i.e., an,i ∈ An for 1 ≤ i ≤ d. Let
(B, ψ) be another algebraic probability space and (b1, . . . , bd) a d-dimensional random
vector. We say that (an,1, . . . , an,d) converges to (b1, . . . , bd) in moment if

lim
n→∞

φn(a
ϵ1
n,i1

· · · aϵmn,im) = ψ(bϵ1i1 · · · b
ϵm
im
)

for any choice of i1, . . . , im ∈ {1, . . . , d}, ϵ1, . . . , ϵm ∈ {1, ∗} and m ≥ 1. In that case
we write

(an,1, . . . , an,d)
m−→ (b1, . . . , bd).

In particular, for real random variables an = a∗n ∈ An, n ≥ 1, and b = b∗ ∈ B, we say
that an converges to b in moment if

lim
n→∞

φn(a
m
n ) = ψ(bm)

for all m ≥ 0. In that case we write an
m−→ b.

Theorem 8.2 (QCLT for growing distance-regular graphs). Notations and assump-
tions being as above, the degree is denoted by κ(ν) = b0(ν). Assume that

ωn = lim
ν→∞

bn−1(ν)cn(ν)

κ(ν)
, αn = lim

ν→∞

an−1(ν)√
κ(ν)

(8.2)

exist for all n ≥ 1 and ({ωn}, {αn}) are Jacobi coefficients. Let (Γ, {Ψn}, B+, B−, B◦)
be the associated interacting Fock space. Then we have(

A+
ν√
κ(ν)

,
A−

ν√
κ(ν)

,
A◦

ν√
κ(ν)

)
m−→ (B+, B−, B◦), as ν → ∞. (8.3)

After the normalization as in (8.2) we obtain ω1 = 1 and α1 = 0. That is, the limit
distribution has mean 0 and variance 1.



8.2. Hamming graphs

Let N ≥ 1 and d ≥ 1. Set F = {1, 2, . . . , N} and consider the d fold Cartesian product
of F :

F d = {x = (ξ1, . . . , ξd) ; ξi ∈ F, 1 ≤ i ≤ d}.
For x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd) define

∂(x, y) = |{1 ≤ i ≤ d ; ξi ̸= ηi}|.

Then ∂ becomes a metric on F d, which is called the Hamming distance. A graph on
V = F d with edge set E = {{x, y} ; x, y ∈ V, ∂(x, y) = 1} is called a Hamming graph
and is denoted by H(d,N).

The Hamming graph H(d,N) is distance-regular and the intersection array is given
by

an = n(N − 2), bn = (d− n)(N − 1), cn = n, (8.4)

for 0 ≤ n ≤ d = diamH(d,N). In particular, the degree is given by

κd,N = d(N − 1).

The Jacobi coefficients of the vacuum spectral distribution of A of H(d,N) are given
by

ωn = n(d− n+ 1)(N − 1), 1 ≤ n ≤ d,

αn = (n− 1)(N − 2), 1 ≤ n ≤ d+ 1.

These diverges as d→ ∞ and N → ∞. We see from

⟨eo, Aeo⟩ = 0, ⟨eo, A2eo⟩ = deg(o) = κd,N = d(N − 1),

that a reasonable normalization is given by

A√
d(N − 1)

=
A+√

d(N − 1)
+

A−√
d(N − 1)

+
A◦√

d(N − 1)

and we have

A+√
d(N − 1)

Φn =

√
(n+ 1)

(
1− n

d

)
Φn+1 , (8.5)

A−√
d(N − 1)

Φn =

√
n

(
1− n− 1

d

)
Φn−1 , (8.6)

A◦√
d(N − 1)

Φn = n

√
N − 2

d

√
N − 2

N − 1
Φn . (8.7)

The coefficients in the right-hand sides converge as d → ∞ and N → ∞ with the
scaling balance condition:

N

d
→ τ ≥ 0. (8.8)

The limit actions are described by the Boson Fock space (Γ, {Ψn}, B+, B−) associated
with the Jacobi coefficients ({ωn = n}, {αn ≡ 0}). In fact, we have formally obtain:

lim
N/d→τ
d,N→∞

Aϵ√
d(N − 1)

= Bϵ, ϵ ∈ {+,−, ◦}, (8.9)

where B◦ =
√
τ B+B−. We claim (8.9) in the sense of moment convergence.



Theorem 8.3 (quantum CLT for Hamming graphs). Let Ad,N be the adjacency matrix
of the Hamming graph H(d,N), and Ad,N = A+

d,N +A−
d,N +A◦

d,N the quantum decompo-
sition with respect to an arbitrary chosen root o = od,N . Let (Γ, {Ψn}, B+, B−) be the
Boson Fock space. Then we have(

A+
d,N√

d(N − 1)
,

A−
d,N√

d(N − 1)
,

A◦
d,N√

d(N − 1)

)
m−→ (B+, B−,

√
τ B+B−), (8.10)

as N → ∞ and d→ ∞ with N/d→ τ ≥ 0. In particular, for m ≥ 0 we have

lim
N/d→τ
d,N→∞

⟨
eo,

(
Ad,N√
d(N − 1)

)m

eo

⟩
= ⟨Ψ0, (B

+ +B− +
√
τ B+B−)mΨ0⟩. (8.11)

Suppose τ = 0. Then B+ +B− +
√
τ B+B− = B+ +B−+ is a sum of annihilation

and creation operators of Boson Fock space so the vacuum spectral distribution is
the standard normal distribution, see Section 3. Since the normal distribution is the
solution to a determinate moment problem, the normalized spectral distribution of the
Hamming graph H(d,N) converges to the standard normal distribution weakly too.

Suppose τ > 0. We have

B+ +B− +
√
τ B+B− =

√
τ

(
B+ +

1√
τ

)(
B− +

1√
τ

)
− 1√

τ
. (8.12)

It is known (Section 3) that the vacuum distribution of (B+ + 1/
√
τ)(B− + 1/

√
τ) is

the Poisson distribution with parameter 1/τ . Thus, the vacuum spectral distribution
of (8.12) is obtained from the Poisson distribution by affine transformation (dilation
and translation). Of course, it is described explicitly though omitted.

8.3. Homogeneous trees and Kesten distributions

For κ ≥ 2 let Tκ denote the homogeneous tree of degree κ ≥ 2, i.e., a unique κ-regular
connected graph without cycles. Of course, Tκ is an infinite graph. As is easily verified,
Tκ is a distance-regular graph with intersection array:{cn}

{an}
{bn}

 =

0 1 1 . . .
0 0 0 . . .
κ κ− 1 κ− 1 . . .


Hence, the spectral distribution µκ in the vacuum state at an arbitrary chosen root
o ∈ V is a probability measure corresponding to the Jacobi coefficients given by

ω1 = κ, ω2 = ω3 = · · · = κ− 1; αn = 0, n ≥ 1. (8.13)

Theorem 8.4 (quantum CLT for homogeneous trees). For κ ≥ 2 let Aκ be the adja-
cency matrix of the homogeneous tree Tκ and Aκ = A+

κ +A
−
κ the quantum decomposition

with respect to an arbitrary chosen root o = oκ. Let (Γ, {Ψn}, B+, B−) be the free Fock
space associated with the Jacobi coefficients ({ωn ≡ 1}, {αn ≡ 0}). Then, we have(

A+
κ√
κ
,
A−

κ√
κ

)
m−→ (B+, B−), κ→ ∞.



Corollary 8.5. We have

lim
κ→∞

⟨
eo,

(
Aκ√
κ

)m

eo

⟩
= ⟨Ψ0, (B

+ +B−)mΨ0⟩, m ≥ 0. (8.14)

Therefore, the normalized spectral distribution of the adjacency matrix of Tκ converges
to the normalized Wigner semicircle law in the sense of moments and weak convergence
as κ→ ∞.

In fact, from (8.13) we may easily obtain the vacuum spectral distribution of Tκ,
which is given by µκ(dx) = ρκ(x)dx with

ρκ(x) =
κ

2π

√
4(κ− 1)− x2

κ2 − x2
, |x| ≤ 2

√
κ− 1 . (8.15)

This was derived first by Kesten [34]. The derivation is clarified by means of the
quantum decomposition. It is also easy to verify the scaling limit of (8.15) converges
to the Wigner semicircle law. This may be seen as a prototype of free central limit
theorem.

8.4. Spidernets and free Meixner distributions

Definition 8.6. Let a, b, c be integers such that a ≥ 1, b ≥ 2 and 1 ≤ c ≤ b − 1. A
spidernet is a graph G = (V,E) with a root o ∈ V such that

ω+(o) = a,

ω−(o) = 0,

ω◦(o) = 0,


ω+(x) = c,

ω−(x) = 1,

ω◦(x) = b− 1− c,

for x ̸= o, (8.16)

where ωϵ(x) = |{y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ϵ}| for x ∈ V as usual. Such a
spidernet is denoted by S(a, b, c).

Figure 3: Spidernet S(4, 5, 2)

In particular, S(a, a, a − 1) = Ta is a homogeneous tree of degree a. Note that
a spidernet is not uniquely determined by the three parameters a, b, c in general. A
spidernet is not distance-regular in general. Nevertheless, the method of quantum
decomposition works well.



Theorem 8.7. Let G = S(a, b, c) be a spidernet with a root o ∈ V . Let A be
the adjacency matrix and A = A+ + A− + A◦ the quantum decomposition. Then
(Γ(G), {Φn}, A+, A−, A◦) becomes an interacting Fock space associated with the Jacobi
coefficients

ω1 = a, ω2 = ω3 = · · · = c; α1 = 0, α2 = α3 = · · · = b− 1− c. (8.17)

Corollary 8.8. The vacuum spectral distribution of the adjacency matrix A of a spi-
dernet G = S(a, b, c) at the root o ∈ V is a unique probability measure corresponding
to the Jacobi parameters given in (8.17).

Definition 8.9. Let p > 0, q ≥ 0 and a ∈ R. A probability measure uniquely
determined by the Jacobi coefficients

{ωn} = {p, q, q, . . . }, {αn} = {0, a, a, . . . },

is called the free Meixner distribution with parameters p, q, a. An explicit form is
known, see e.g., Hora–Obata [30].

8.5. Asymptotic quantum decomposition

For the N -dimensional integer lattice ZN , N ≥ 2, we cannot apply the method of
quantum decomposition, but in the limit as N → ∞ we obtain an interacting Fock
space structure. This observation yields a general result.

Let Gν be growing regular graph with distinguished vertices o = oν . Each Gν

admits the stratification with respect to oν and we have the quantum decomposition of
the adjacency matrix Aν = A+

ν +A−
ν +A◦

ν . In order to control the actions of quantum
components we prepare three statistics for ωϵ. We define

M(ωϵ|Vn) =
1

|Vn|
∑
x∈Vn

|ωϵ(x)|

Σ2(ωϵ|Vn) =
1

|Vn|
∑
x∈Vn

{
|ωϵ(x)| −M(ωϵ|Vn)

}2
L(ωϵ|Vn) = max{|ωϵ(x)| ; x ∈ Vn},

where the suffix ν is omitted. Each Gν is assumed to be regular, of which the degree
is denoted by κ(ν). We pose conditions for the asymptotics of the above statistics:

(A1) lim
ν→∞

κ(ν) = ∞;

(A2) For any n ≥ 1,

lim
ν→∞

M(ω−|Vn) ≡ ωn <∞, lim
ν→∞

Σ2(ω−|Vn) = 0, sup
ν
L(ω−|Vn) <∞;

(A3) For any n ≥ 0,

lim
ν→∞

M(ω◦|Vn)√
κ(ν)

≡ αn+1 <∞, lim
ν→∞

Σ2(ω◦|Vn)
κ(ν)

= 0, sup
ν

L(ω◦|Vn)√
κ(ν)

<∞,

where Vn stands for the nth stratum of the stratification of Gν .



Theorem 8.10 (quantum CLT for growing regular graphs). Let Gν = (Vν , Eν) be
growing regular graphs enjoying conditions (A1)–(A3). Let (Γ, {Ψn}, B+, B−, B◦) be
the interacting Fock space associated with the Jacobi coefficients ({ωn}, {αn}). Then,
as random variables in the algebraic probability space (Ã(Gν), oν), we have(

A+
ν√
κ(ν)

,
A−

ν√
κ(ν)

,
A◦

ν√
κ(ν)

)
m−→ (B+, B−, B◦), ν → ∞.

Corollary 8.11. Notations and assumptions being as in Theorem 8.10, we have

lim
ν→∞

⟨
eo,

(
Aν√
κ(ν)

)m

eo

⟩
= ⟨Ψ0, (B

+ +B− +B◦)mΨ0⟩, m ≥ 0. (8.18)

Therefore, the normalized spectral distribution of the adjacency matrix Aν in the vac-
uum state at oν converges in moment to a probability measure associated with the Jacobi
coefficients ({ωn}, {αn}).

The complete proof of the above statements is given by Hora–Obata [31]. Condi-
tions (A1)–(A3) say that the actions of the quantum components Aϵ

ν coincide asymptot-
ically with those of Bϵ in the interacting Fock space associated with Jacobi coefficients
({ωn}, {αn}). The main step of the proof consists of precise estimate of the error terms.

8.6. Some concrete examples

graphs IFS vacuum state deformed vacuum state

Hamming graphs ωn = n Gaussian (N/d → 0) Gaussian
H(d,N) (Boson) Poisson (N/d → λ−1 > 0) or Poisson
Johnson graphs ωn = n2 exponential (2d/v → 1) ‘Poissonization’ of
J(v, d) geometric (2d/v → p ∈ (0, 1)) exponential distribution

odd graphs ω2n−1 = n two-sided Rayleigh ?
Ok ω2n = n
homogeneous ωn = 1 Wigner semicircle free Poisson
trees Tκ (free)
integer lattices ωn = n Gaussian Gaussian
ZN (Boson)
symmetric groups ωn = n Gaussian Gaussian
Sn (Coxeter) (Boson)
Coxeter groups ωn = 1 Wigner semicircle free Poisson
(Fendler) (free)
Spidernets ω1 = 1 free Meixner law free Meixner law
S(a, b, c) ω2 = · · · = q

For the deformed vacuum states see Section 14.

9. Graph Products

A binary operation of graphs (G1, G2) 7→ G = Φ(G1, G2), which gives rise to a binary
operation of adjacency matrices:

(A1, A2) 7→ A = Φ(A1, A2), (9.1)

would be interesting for the study of growing graphs. Below we focus on some binary
operations called graph products in general. Let G1 = (V1, E1) and G2 = (V2, E2) be
two graphs with adjacency matrices A1 and A2, respectively.



Definition 9.1. The Cartesian product G1 ×C G2 of two graphs G1 and G2 is the
graph on V = V1 × V2, where two distinct vertices (x1, y1) and (x2, y2) are adjacent
whenever (i) x1 ∼ x2 and y1 = y2; or (ii) x1 = x2 and y1 ∼ y2.

The adjacency matrix of the Cartesian product G1 ×C G2 is given by

A[G1 ×C G2] = A1 ⊗ I2 + I1 ⊗ A2 , (9.2)

where Ii denotes the identity matrix with index set Vi × Vi for i = 1, 2.

Definition 9.2. The Kronecker product G1 ×K G2 of two graphs G1 and G2 is the
graph on V = V1 × V2, where two distinct vertices (x1, y1) and (x2, y2) are adjacent
whenever x1 ∼ x2 and y1 ∼ y2.

The adjacency matrix of the Kronecker product G1 ×K G2 is given by

A[G1 ×K G2] = A1 ⊗ A2 . (9.3)

We see that the Kronecker product is a subgraph of the distance-2 graph of the Carte-
sian product G1 ×C G2.

Definition 9.3. The strong product G1 ×S G2 of two graphs G1 and G2 is the graph
on V = V1 × V2, where two distinct vertices (x1, y1) and (x2, y2) are adjacent whenever
(i) x1 = x2 or x1 ∼ x2; and (ii) y1 = y2 or y1 ∼ y2.

The adjacency matrix of the strong product G1 ×S G2 satisfies

A[G1 ×S G2] = A1 ⊗ I2 + I1 ⊗ A2 + A1 ⊗ A2 . (9.4)

Hence, the edge set of the strong product is the union of those of the Cartesian product
and of the Kronecker product.

Definition 9.4. The lexicographic product G1 ▷L G2 of two graphs G1 and G2 is the
graph on V = V1 × V2, where two distinct vertices (x1, y1) and (x2, y2) are adjacent
whenever (i) x1 ∼ x2; or (ii) x1 = x2 and y1 ∼ y2.

The adjacency matrix of the lexicographic product G1 ▷L G2 satisfies

A[G1 ▷L G2] = A1 ⊗ J2 + I1 ⊗ A2 , (9.5)

where J2 is the matrix with index set V2 × V2 whose entries are all one.

Definition 9.5. Let o2 ∈ V2 be a distinguished vertex of G2. The comb product
G1 ▷o2 G2 = G1 ▷ G2 is the graph on V = V1×V2, where two distinct vertices (x1, y1)
and (x2, y2) are adjacent whenever (i) x1 ∼ x2 and y1 = y2 = o2; or (ii) x1 = x2 and
y1 ∼ y2.

The adjacency matrix of the comb product G1 ▷o2 G2 satisfies

A[G1 ▷o2 G2] = A1 ⊗ P2 + I1 ⊗ A2 , (9.6)

where P2 is the matrix with index set V2×V2 defined by (P2)xy = δxo2δyo2 for x, y ∈ V2.
In other words, P2 is the rank one projection onto the space spanned by eo2 .

Definition 9.6. For i = 1, 2 let oi ∈ Vi be a distinguished vertex of Gi. The star
product G1 ⋆ G2 = (G1, o1) ⋆ (G2, o2) is the graph on V = V1 × V2, where two distinct
vertices (x1, y1) and (x2, y2) are adjacent whenever (i) x1 ∼ x2, y1 = y2 = o2; or (ii)
x1 = x2 = o1, y1 ∼ y2.



The adjacency matrix of the star product G1 ⋆ G2 satisfies

A[G1 ⋆ G2] = A1 ⊗ P2 + P1 ⊗ A2 , (9.7)

where Pi is the matrix with index set Vi × Vi defined by (Pi)xy = δxoiδyoi for x, y ∈ Vi.
In view of the fact that every vertex (x, y) which does not belong to

V1 ⋆ V2 = {(x, o2) ; x ∈ V1} ∪ {(o1, y) ; y ∈ V2}

is isolated, the induced subgraph of G1 ⋆G2 spanned by V1 ⋆V2 is also referred to as the
star product. Note that the induced subgraph of G1 ⋆ G2 spanned by V1 ⋆ V2 coincides
with the induced subgraph of G1 ×C G2 spanned by V1 ⋆ V2.

Let G = G1♯G2 be one of the graph products introduced above. We say that
the product is commutative if G1♯G2

∼= G2♯G1 and associative if (G1♯G2)♯G3
∼=

G1♯(G2♯G3). The following table summarizes these properties.

graph product ♯ commutativity associativity

Cartesian ×C yes yes

Kronecker ×K yes yes

strong ×S yes yes

lexicographic ▷L no yes

comb ▷ no yes

star ⋆ yes yes

The terminologies of graph products are not unified in literatures. Our definitions are
basically after the books by Balakrishnan–Ranganathan [5] and by Godsil–Royle [18].

10. Cartesian Products and Commutative Independence
To avoid confusion we need precise definitions. Let A be a unital ∗-algebra. A subset
B ⊂ A is called a ∗-subalgebra if it is closed under the algebraic operations and the
involution, and is called a unital ∗-subalgebra if it is a ∗-subalgebra containing 1A, the
multiplication unit of A.

Definition 10.1. Let (A, φ) be an algebraic probability space. A family {Aλ} of
unital ∗-subalgebrasof A is called commutative independent or tensor independent with
respect to φ if

φ(a1 · · · am), ai ∈ Aλi
, λ1 ̸= λ2 ̸= · · · ̸= λm ,

satisfies the following reduction process:

φ(a1 · · · am) =

{
φ(a1)φ(a2 · · · am), λ1 ̸∈ {λ2, . . . , λm},
φ(a2 · · · ar−1(a1ar)ar+1 · · · am), otherwise,

where r ≥ 3 is the smallest number such that λ1 = λr. Note that neither Aλ nor A is
assumed to be commutative.

Definition 10.2. Let (A, φ) be an algebraic probability space. Let {aλ} be a set of
random variables and Aλ the unital ∗-subalgebra generated by aλ and 1A. We say that
{aλ} is commutative independent if so is {Aλ}.



Theorem 10.3 (Commutative CLT). Let an = a∗n be a sequence of real random vari-
ables in an algebraic probability space (A, φ), normalized as φ(an) = 0 and φ(a2n) = 1.
Assume that {an} has uniformly bounded mixed moments, i.e.,

Cm = sup{|φ(an1 · · · anm)| ; n1, . . . , nm ≥ 1} <∞, m ≥ 1.

If {an} are commutative independent, we have

1√
N

N∑
n=1

an
m−→ g,

where g is a random variable obeying the standard normal distribution N(0, 1).

The above result is an algebraic version of the classical central limit theorem. The
key step of the proof is, after expansion to select the terms φ(an1 · · · anm) contributing
to the limit. In fact, for an odd m there are no contributing terms, and for an even m
we may show that

lim
N→∞

1

Nm

∑
φ(an1 · · · an2m) =

(2m)!

2mm!
=

1√
2π

∫
R
x2me−x2/2dx, m ≥ 0.

It is noted that in Theorem 10.3, the moment convergence implies weak convergence
because N(0, 1) is the solution to a determinate moment problem.

Theorem 10.4. For i = 1, 2 let Gi be a graph, Ai the adjacency matrix, and φi a
state on the adjacency algebra A(Gi). Then, being regarded as a random variable in
the algebraic probability space (A(G1) ⊗ A(G2), φ1 ⊗ φ2), the adjacency matrix A =
A[G1 ×C G2] admits an expression

A = A1 ⊗ I2 + I1 ⊗ A2 ,

where the right-hand side is a sum of commutative independent random variables.
Therefore, letting µ and ν be the spectral distribution of A1 and A2, the spectral distri-
bution of A in the state φ1 ⊗ φ2 is given by the classical convolution µ ∗ ν.
Theorem 10.5 (CLT for Cartesian powers). Let G = (V,E) be a graph with adjacency
matrix A, and φ a state on A(G). For n ≥ 1 let Gn = G×C · · ·×CG denote the n-fold
Cartesian power of G and An the adjacency matrix of Gn. Then,

An − nφ(A)√
n(φ(A2)− φ(A)2)

m−→ g ∼ N(0, 1), (10.1)

in the n-fold product state φn = φ ⊗ · · · ⊗ φ (n times). Moreover, the normalized
spectral distribution of An in φn converges to N(0, 1) weakly.

11. Kronecker and strong products
The Mellin convolution is originally defined on the basis of multiplicative structure of
R>0 = (0,∞). For our purpose, extending slightly the definition, we define the Mellin
convolution of two probability measures on R to be a probability measure µ ∗M ν
uniquely specified by∫

R
f(z)µ ∗M ν(dz) =

∫
R

∫
R
f(xy)µ(dx)ν(dy), f ∈ Cb(R). (11.1)

By definition we have δa ∗M δb = δab for a, b ∈ R. Furthermore, δ0 ∗M µ = δ0 and
δ1 ∗M µ = µ for any probability measure µ.



Theorem 11.1. For i = 1, 2 let Gi be a graph and Ai the adjacency matrix. Let φi

be a state on the adjacency algebra A(Gi) and µi the spectral distribution of Ai in φi.
Then, the adjacency matrix of the Kronecker product G1 ×K G2, regarded as a random
variable in (A(G1)⊗A(G2), φ1 ⊗ φ2), admits an expression

A[G1 ×K G2] = A1 ⊗ A2 (11.2)

and its spectral distribution is given by µ1 ∗M µ2.

Theorem 11.2. Notations and assumptions being the same as in Theorem 11.2, the
adjacency matrix of the strong product G1 ×S G2, regarded as a random variable in
(A(G1)⊗A(G2), φ1 ⊗ φ2), admits an expression

A[G1 ×S G2] = A1 ⊗ I2 + I1 ⊗ A2 + A1 ⊗ A2 (11.3)

and its spectral distribution is given by S−1(Sµ1 ∗M Sµ2), where S is the shift defined
by Sµ(dx) = µ(dx− 1).

12. Lexicographic and Comb Products, and Monotone Inde-
pendence

Let (Λ, <) be a totally ordered set. In a finite sequence

λ1 ̸= λ2 ̸= · · · ̸= λs ̸= · · · ̸= λm , λi ∈ Λ, m ≥ 2, (12.1)

λs is called a peak if (i) 1 < s < m, λs−1 < λs and λs > λs+1; or (ii) s = 1 and λ1 > λ2;
or (iii) s = m and λm−1 < λm.

Definition 12.1. Let (A, φ) be an algebraic probability space and let {Aλ ; λ ∈ Λ} be
a set of ∗-subalgebras of A indexed by a totally ordered set (Λ, <). We say that {Aλ}
is monotone independent if

φ(a1 · · · as . . . am) = φ(as)φ(a1 · · · ǎs · · · am), ǎs: omission,

for any ai ∈ Aλi
, where λ1 ̸= λ2 ̸= · · · ̸= λm and λs is a peak.

Definition 12.2. Let (A, φ) be an algebraic probability space. Let {aλ} be a set of
random variables indexed by a totally ordered set (Λ, <), and Aλ the ∗-subalgebra
generated by aλ. We say that {aλ} is monotone independent if so is {Aλ}.

The concept of monotone independence is due to Lu [40] and Muraki [42].

Theorem 12.3. For i = 1, 2 let Gi be a graph and Ai the adjacency matrix. Let φ1

be an arbitrary state on A(G1) and φ2 the vacuum state on A(G2) at a distinguished
vertex o2 in G2. Then, being regarded as a random variable in (A(G1)⊗A(G2), φ1⊗φ2),
the adjacency matrix A = A[G1 ▷o2 G2] admits an expression

A = A1 ⊗ P2 + I1 ⊗ A2, (12.2)

where the right-hand side is a sum of monotone independent random variables.

Theorem 12.4. For i = 1, 2 let Gi be a graph and Ai the adjacency matrix. Let φ1 be
an arbitrary state on A(G1). Assume that G2 is a finite graph, and let φ2 be the state
on A(G2) defined by the density matrix J2/|V2|, where J2 is the matrix whose entries
are all one. Then, being regarded as a random variable in (A(G1) ⊗A(G2), φ1 ⊗ φ2),
the adjacency matrix A = A[G1 ▷L G2] admits an expression

A = A1 ⊗ J2 + I1 ⊗ A2, (12.3)

where the right-hand side is a sum of monotone independent random variables.



Theorem 12.5 (Monotone CLT). Let an = a∗n be a sequence of real random variables
in an algebraic probability space (A, φ), normalized as φ(an) = 0 and φ(a2n) = 1.
Assume that {an} has uniformly bounded mixed moments, see Theorem 10.3. If {an}
are monotone independent, we have

1√
N

N∑
n=1

an
m−→ α, (12.4)

where α is a random variable obeying the normalized arcsine law.

As in the commutative CLT (Theorem 10.3), the main step of the proof is to select
contributing terms φ(an1 · · · anm) after the expansion. In fact, for an odd m there are
no contributing terms and for an even m, we may show that

lim
N→∞

1

Nm

∑
φ(an1 · · · an2m) =

(2m)!

2mm!m!
=

1

π

∫ √
2

−
√
2

x2m√
2− x2

dx, m ≥ 0.

For the details see e.g., Hora–Obata [30], Muraki [43], Saigo [54].
For monotone independent real random variables a = a∗ and b = b∗ in an algebraic

probability space (A, φ), we are interested in the spectral distribution of a+ b. In fact,
the spectral distribution of a+ b is given by the monotone convolution due to Muraki
[42, 43], see also Hasebe [20].

13. Star Products and Boolean Independence
Definition 13.1. Let (A, φ) be an algebraic probability space and {Aλ ; λ ∈ Λ} be a
set of ∗-subalgebras of A. We say that {Aλ} is Boolean independent if

φ(a1 · · · am) = φ(a1)φ(a2 · · · am)

for any ai ∈ Aλi
, where λ1 ̸= λ2 ̸= · · · ̸= λm.

The concept of Boolean independence was introduced by Speicher–Woroudi [56],
while the idea appeared implicitly in Bożejko [10].

Theorem 13.2 (Boolean CLT). Let an = a∗n be a sequence of real random variables
in an algebraic probability space (A, φ), normalized as φ(an) = 0 and φ(a2n) = 1.
Assume that {an} has uniformly bounded mixed moments, see Theorem 10.3. If {an}
are Boolean independent, for any m ≥ 0 we have

1√
N

N∑
n=1

an
m−→ β (13.1)

where β is a random variable obeying the normalized Bernoulli distribution.

The proof is similar to the commutative and monotone CLTs, for the details see
e.g., Hora–Obata [30], Obata [45], Speicher–Woroudi [56].

Theorem 13.3. For i = 1, 2 let Gi be a graph with a distinguished vertex oi, and
Ai the adjacency matrix. Let φi be the vacuum state on A(Gi) at oi. Then, being
regarded as a random variable in (A(G1) ⊗ A(G2), φ1 ⊗ φ2), the adjacency matrix
A = A[(G1, o1) ⋆ (G2, o2)] admits an expression

A = A1 ⊗ P2 + P1 ⊗ A2, (13.2)

where the right-hand side is a sum of Boolean independent random variables.



For two probability measures µ and ν in Pfm(R) we may take Boolean independent
algebraic realizations a and b. If the spectral distribution of a+b is uniquely determined
(e.g., compactly supported), it is called the Boolean convolution of µ and ν, and is
denoted by µ⊎ν. The Boolean convolution is calculated through the moment generating
functions.

14. Relevant topics and further applications

14.1. A generalization of interacting Fock space

Our discussion has been so far based on the actions of Bϵ defined by Jacobi coefficients,
see Figure 1. It is interesting to start with a tridiagonal operator T = T+ + T− + T ◦,
where T ϵ is defined as in Figure 4 with an, bn, cn ∈ R, an ̸= 0 and cn ̸= 0. Note that
(T−)∗ = T+ is no longer assumed.

1

Φ0 Φ1

0 1

n

Φn   1 Φn

n

Φn+1

n   1

T

−

+

T

T

c c cn+1

a a a0 n

b b n   1b b n+1b

Figure 4: The actions of T+, T−, T ◦

Since the combinatorial argument remain valid, the Accardi–Bożejko formula [2]
holds after obvious modification.

Theorem 14.1. For m ≥ 0 we have

⟨Φ0, T
mΦ0⟩ =

∑
ϑ∈PNCPS(m)

∏
v∈ϑ
|v|=1

b(dϑ(v)− 1)
∏
v∈ϑ
|v|=2

a(dϑ(v)− 1) c(dϑ(v)).

Let {Qn(x)} be the polynomials defined inductively as

Q0(x) = 1,

xQ0(x) = a0Q1(x) + b0Q0(x),

xQn(x) = anQn+1(x) + bnQn(x) + cnQn−1(x), n ≥ 1.

We set
Pn(x) = a0a1 · · · an−1Qn(x), n ≥ 0.

Then we have

P0(x) = 1,

P1(x) = x− α1,

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), n ≥ 1,

where
ωn = an−1cn, αn = bn−1 , n ≥ 1.

We are interested in the case where ({ωn}, {αn}) are Jacobi coefficients.



Theorem 14.2. Notations and assumptions being as above, assume in addition that
({ωn}, {αn}) are Jacobi coefficients and let µ be the corresponding probability measure
on R. Then for any i ≥ 0 and j ≥ 0 we have

⟨Φj, T
mΦi⟩ =

1

πi

∫
R
xmQi(x)Qj(x)µ(dx), m ≥ 0, (14.1)

where

π0 = 1, πi =

∫
R
Qi(x)

2µ(dx) =
c1c2 · · · ci
a0a1 · · · ai−1

.

In particular,

⟨Φ0, T
mΦ0⟩ =

∫
R
xmµ(dx) =Mm(µ), m ≥ 0.

The above result is an extension of the famous Karlin–McGregor formula [33], which
originally gives an integral expression of the transition probability of a birth-and-death
process. The detailed argument is found in Obata [50].

14.2. Distance-k graphs of Cartesian powers

Let k ≥ 1 be an integer. The distance-k graph of a graph G = (V,E) is a graph G[k]

on V , where two distinct vertices x, y ∈ V are adjacent whenever ∂G(x, y) = k. By
definition, the adjacency matrix of G[k] coincides with the kth distance matrix Ak of
G. Clearly, the distance-1 graph G[1] coincides with G itself. Note that the distance-k
graph of a connected graph is not necessarily connected.

Theorem 14.3. Let G = (V,E) be a finite connected graph with |V | ≥ 2. For k ≥ 1
and N ≥ 1 let G[N,k] be the distance-k graph of the N-fold Cartesian power GN =
G ×C · · · ×C G (N times). Let A[N,k] be the adjacency matrix. Then, as a random
variable in the algebraic probability space (A(G[N,k]), φtr) we have

A[N,k]

Nk/2

m−→
(
2|E|
|V |

)k/2
1

k!
H̃k(g), (14.2)

where g is a random variable obeying the standard normal distribution N(0, 1), and
H̃k(x) is the monic Hermite polynomial of degree k, i.e., the orthogonal polynomial
associated to the standard normal distribution.

The above result is regarded as a polynomial extension of CLT. For k = 2 the limit
distribution is the normalized χ2

1-distribution, which is the solution to a determinate
moment problem. However, it is plausible that the uniqueness does not hold for k ≥ 3.

Theorem 14.3 is shown by Hibino–Lee–Obata [26] after some partial results by
Kurihara–Hibino [36] and Obata [49]. As a parallel result to Theorem 14.3, the asymp-
totic spectral distribution of the distance-k graphs of free product graphs is obtained
by Arizmendi–Gaxiola [4].

14.3. Counting walks

Let G = (V,E) be a graph with adjacency matrix A. For x, y ∈ V and m ≥ 0 let
Wm(x, y) = Wm(x, y;G) denote the number of m-step walks connecting x and y. Then
we have

Wm(x, y) = ⟨ex, Amey⟩ = (Am)xy .



Fix a distinguished vertex o ∈ V and equip the adjacency algebra with the vacuum
state at o. Then the adjacency matrix A becomes a real random variable, of which the
spectral distribution is denoted by µ. We thus come to

Mm(µ) =

∫
R
xmµ(dx) = ⟨Am⟩o = Wm(o, o;G), m ≥ 0. (14.3)

We write Z2 = {(x, y) ; x, y ∈ Z}merely for the Cartesian product set. Accordingly,
the two-dimensional integer lattice Z ×C Z should be understood as the graph on Z2

with adjacency relation

(x1, y1) ∼ (x2, y2) ⇐⇒

{
x2 = x1 ± 1,

y2 = y1,
or

{
x2 = x1,

y2 = y1 ± 1.

The induced subgraph of Z ×C Z spanned by a subset D ⊂ Z2 is denoted by L[D].
Such a graph L[D] is called a restricted lattice.

We are particularly interested in restricted lattices which admit Kronecker prod-
uct structure. Recall that the Kronecker product Z ×K Z is the graph on Z2 =
{(u, v) ; u, v ∈ Z} with adjacency relation:

(u1, v1) ∼K (u2, v2) ⇐⇒ u2 = u1 ± 1 and v2 = v1 ± 1. (14.4)

Then we have the following

L[Z2] ∼= (Z×K Z)o,
L[x ≥ y] ∼= (Z+ ×K Z)o,
L[x ≥ y ≥ −x] ∼= (Z+ ×K Z+)

o,

L[x ≥ y ≥ x− (n− 1)] ∼= (Pn ×K Z)o, n ≥ 2,

L

[
0 ≤ x+ y ≤ k − 1
0 ≤ x− y ≤ l − 1

]
∼= (Pk ×K Pl)

o, k ≥ 2, l ≥ 2,

where the the symbol Go stands for the connected component containing o = (0, 0).
The Kronecker product structure of a restricted lattice is useful for counting walks.

The numbers of walks from the origin 0 to itself in Z and in Z+ = {0, 1, 2, . . . } are
respectively given by

W2m(0;Z) =
(
2m

m

)
, W2m(0;Z+) = Cm =

1

m+ 1

(
2m

m

)
, m ≥ 0, (14.5)

where Cm is the Catalan number, and W2m+1(0;Z) = W2m+1(0;Z+) = 0 for all m ≥ 0.
Then we have

W2m(o;L[x ≥ y]) = Cm

(
2m

m

)
=

1

m+ 1

(
2m

m

)2

,

W2m(o;L[x ≥ y ≥ −x]) = C2
m =

1

(m+ 1)2

(
2m

m

)2

.

Theorem 14.4. For D ⊂ Z2 let µ = µD be the spectral distribution of the adjacency
matrix of the restricted lattice L[D] in the vacuum state at the origin o. In other words,
µ satisfies

Wm(o;L[D]) =

∫
R
xmµ(dx), m ≥ 0.

The correspondence between domains and spectral distributions is shown in the following
table:



D µ = µD

Z2 α ∗ α = α ∗M α

{x ≥ y} w ∗M α

{x ≥ y ≥ −x} w ∗M w

{x ≥ 0, y ≥ 0} w ∗ w
{y ≥ 0} α ∗ w

Z α

Z+ w

where α is the arcsine law with mean 0 and variance 2, and w the normalized Wigner
semicircle distribution.

Note also that

M2m(α) =

∫
R
x2mα(x) dx =

(
2m

m

)
, M2m+1(α) = 0, m ≥ 0.

and

M2m(w) =

∫
R
x2mw(x) dx = Cm =

1

m+ 1

(
2m

m

)
, M2m+1(w) = 0, m ≥ 0.

The density functions of µD are calculated explicitly in terms of elliptic integrals,
see Lee–Obata [38] and Obata [52].

14.4. Deformed vacuum states and coherent states

For a connected graph G = (V,E) we denote by ∂(x, y) the graph distance between
two vertices x, y ∈ V . Then the matrices

D = [∂(x, y)], Q = [q∂(x,y)], −1 ≤ q ≤ 1,

are called the distance matrix and Q-matrix, respectively. The deformed vacuum state
is defined by

⟨a⟩q = ⟨Qδo, aδo⟩ =
∞∑
n=0

qn|Vn|1/2⟨Φn, aΦ0⟩, a ∈ A(G). (14.6)

Note that ⟨·⟩q is a normalized linear function on A(G) but not necessarily positive.
Now we consider a distance-regular graphs G = (V,E) with intersection array

({cn}, {an}, {bn}). The degree is given by κ = b0. It is noteworthy that QA = AQ.
Moreover, if Q = [q∂(x,y)] is a positive definite kernel on V , the deformed vacuum state
⟨·⟩q is positive (i.e., a state in a strict sense) on the adjacency algebra A(G).

Now consider growing distance-regular graphs G(ν) = (V (ν), E(ν)). Suppose that
each G(ν) is given a deformed vacuum state ⟨·⟩q, where q may depend on ν. In order
to get a reasonable limit we need normalization of the adjacency matrices. Since

⟨A⟩q = qκ, (14.7)

Σ2
q(A) = ⟨(A− ⟨A⟩q)2⟩q = κ(1− q)(1 + q + qa1). (14.8)

the normalized adjacency matrix is given by

Aν − ⟨Aν⟩q
Σq(Aν)

=
A+

ν

Σq(Aν)
+

A−
ν

Σq(Aν)
+
A◦

ν − qκ(ν)

Σq(Aν)
. (14.9)



We assume that under a good scaling balance of ν and q the limits:

ωn = lim
ν,q

bn−1(ν)cn(ν)

Σ2
q(Aν)

, αn = lim
ν,q

an−1(ν)− qκ(ν)

Σq(Aν)
(14.10)

exist and form Jacobi coefficients. Let Γ{ωn} = (Γ, {Ψn}, B+, B−) be the associated
interacting Fock space. Moreover, assume that the limit

cn = lim
ν,q

qn|V (ν)
n |1/2 (14.11)

exists for all n for which {αn} is defined. Let Υ be the formal sum of vectors defined
by

Υ =
∞∑
n=0

cnΨn .

Theorem 14.5 (QCLT for growing distance-regular graphs in the deformed vacuum
state). Notations and assumptions being as above, we have

lim
ν,q

⟨
Ãϵm

ν

Σq(Aν)
· · · Ãϵ1

ν

Σq(Aν)

⟩
q

= ⟨Υ, Bϵm · · ·Bϵ1Ψ0⟩ (14.12)

for any ϵ1, . . . , ϵm ∈ {+,−, ◦} and m ≥ 1.

In the above statement we do not assume that the deformed vacuum state ⟨·⟩q is
positive, but assume that Σ2

q(Aν) > 0 for normalization. If each deformed vacuum

state ⟨·⟩q on A(G(ν)) is positive, there exists a probability measure µ ∈ Pfm(R) such
that

⟨Υ, (B+ +B− +B◦)mΨ0⟩ =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . . (14.13)

This µ is the asymptotic spectral distribution of Aν in the deformed vacuum state that
we are interested in. However, derivation of an explicit form of µ from (14.13) seems
to be a difficult problem in general.

As a particular case we record the following

Definition 14.6. Let (Γ, {Ψn}, B+, B−) be an interacting Fock space associated with
a Jacobi sequence {ωn}. The coherent vector with parameter z ∈ C is a formal sum of
vectors defined by

Ωz = Ψ0 +
∞∑
n=1

zn√
ωn · · ·ω2ω1

Ψn . (14.14)

A coherent state will emerge in various context of limit theorems and play an
interesting role in computing asymptotic spectral distributions. Here we only note
that Ωz is a generalized eigenvector of B− with an eigenvalue z, i.e., B−Ωz = zΩz.
More precisely,

⟨Ωz, B
+Φ⟩ = z̄⟨Ωz,Φ⟩, Φ ∈ Γ.
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