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Abstract

We provide a brief introduction to quiver W-algebra, which is a gauge
theory construction of W-algebra. We show that the gauge theory partition
function is generated by the screening charge, and the generating current
of the W-algebra is given by the qq-character, a double quantization of the
character for the fundamental representations associated with the quiver.

1. Introduction and summary
The Virasoro algebra, and the W-algebra in general, is a symmetry algebra describing
the infinite dimensional conformal symmetry appearing in several fields of physics, e.g.,
string theory, critical phenomena in statistical mechanics, mathematical physics. The
q-deformation of Virasoro/W-algebra was introduced in the middle of 1990s [1, 2], but
its physical realization, namely a physical system for which the q-Virasoro/W-algebra
plays a role as the symmetry algebra, has not been found for a long time. In the late
2000s, a new physical realization of conformal algebra was proposed, called the AGT
relation [3], which shows a connection between 4d supersymmetric gauge theory and
2d conformal field theory. In this case, the conformal algebra is naturally q-deformed
by considering 5d gauge theory compactified on a circle R4 × S1 [4].

Another realization of the q-conformal algebra is quiver W-algebra [5, 6, 7], which
relates Γ-quiver gauge theory in 5d to the q-deformed algebra Wq1,q2(Γ), while the
AGT relation states a connection between G-gauge symmetric theory and W-algebra
Wq1,q2(G). Indeed a duality exchanges Γ and G, and explains a relation of these two
connections with the conformal algebra. The formalism of quiver W-algebra gives rise
to several new features as follows:

Affine and hyperbolic W-algebras [5]

For finite type simply-laced quiver, Γ = ADE, the algebra Wq1,q2(Γ) reproduces the
construction by Frenkel–Reshetikhin [8]. If we start with non-finite type quiver,
namely affine or hyperbolic quiver, we obtain a new family of W-algebras, associ-
ated with affine/hyperbolic Lie algebra.

Elliptic deformation of W-algebras [6]

The q-deformed algebra arises from 5d gauge theory on R4 × S1. Applying our
formalism to 6d gauge theory compactified on a torus R4 × T 2, we obtain the
elliptic deformation of W-algebras.
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Fractional quiver gauge theory [7]

Considering a quiver consisting of vertices and edges, inevitably it turns out to
be simply-laced. Utilizing a connection between gauge theory and W-algebras, we
define the fractional quiver gauge theory, reproducing the W-algebras associated to
non-simply-laced Lie algebras, which also implies fractionalization of quiver variety.

In this article, we explain basic aspects of quiver W-algebra, including the operator-
valued gauge theory partition function (Z-state), and the construction of the generating
current for the algebra, which is given by the double quantization of characters associ-
ated with quiver (qq-character.) Please refer to the original papers [5, 6, 7] for details.
See also a review article [9] and the shortened version in Japanese [10].
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2. Quiver gauge theory
Gauge theory is a quantum field theory, which owes its dynamics to a gauge field A ∈ g,
a Lie algebra valued one-form field defined on a spacetime. It has a symmetry under
the gauge transformation A → gAg−1 + gdg−1 with g ∈ G (adjoint representation),
where G is the gauge group, the Lie group associated with the algebra g.

Quiver gauge theory, in general, has several gauge fields transforming under the
corresponding multiple gauge groups, characterized by a quiver graph Γ.1 Let Γ be
a quiver with a set of nodes (vertices) Γ0 and arrows (directed edges) Γ1. An edge
from the node i to j is denoted by e : i → j. We assign a gauge group U(ni) to
each node i ∈ Γ0 under which a gauge field Ai transforms in adjoint representation,
Ai → giAig

−1
i + gidg

−1
i with gi ∈ U(ni). For each edge e : i → j we assign a field

transforms in bifundamental representation of U(ni) and U(nj), namely (n̄i,nj).

2.1. Equivariant localization

We consider four-dimensional Euclidean spacetime R4 = C2 for gauge theory. We
define the field strength (curvature; two-form) from the gauge field Fi = dAi + A2

i for
the node i ∈ Γ0. We are in particular interested in the instanton (anti-self-dual; ASD)
configuration, ∗Fi = −Fi, which can be a solution to the classical e.o.m (Yang–Mills
equation). Such a configuration is characterized by instanton (2nd Chern) numbers:

− 1

8π2

∫
R4

TrF 2
i = ki . (1)

We define a set of gauge group ranks n = (ni)i∈Γ0 and instanton numbers k = (ki)i∈Γ0 .
We denote the instanton moduli space by Mn,k described using the ADHM construc-
tion. Then we define the gauge theory partition function

Z =
∑
k

qk
∫
Mn,k

1 (2)

1We basically follow the notation of [5, 6, 7].



where qk =
∏

i∈Γ0
qkii with qi = exp

(
2π
√
−1τi

)
, and (τi)i∈Γ0 is the complexified gauge

coupling constant. We remark that this simplified partition function can be derived
using the path integral formalism with extended supersymmetry.

Evaluation of the integral over the instanton moduli space can be performed by
applying the equivariant K-theoretic localization (See, for example, [11]): The integral
is localized on discrete fixed points under the torus action, given by (νi,α)α=1,...,ni :=
(eai,α)α=1,...,ni ∈ U(1)ni ⊂ U(ni) for gauge symmetry, and (q1, q2) := (eε1 , eε2) ∈ U(1)2 ⊂
SO(4) for spacetime rotation symmetry. We define q = q1q2 = eε1+ε2 . The fixed
point is labeled by the multiple partition (λi,α)i∈Γ0,α=1,...,ni , satisfying the non-increasing
condition λi,α,1 ≥ λi,α,2 ≥ · · · ≥ 0 = · · · = 0. We have two vector bundles, whose Chern
characters are given by

Ni =

ni∑
α=1

νi,α , Ki =

ni∑
α=1

∑
(s1,s2)∈λi,α

qs1−1
1 qs2−1

2 νi,α . (3)

Then we define (the character of) the universal sheaves from these two bundles evalu-
ated at the fixed point (λi,α)

Yi = Ni − (1− q1)(1− q2)Ki =


(1− q1)

∑
x∈Xi

x

(1− q2)
∑
x∈XT

i

x
, (4)

where we define

Xi =
{
xi,α,k = qk−1

1 q
λi,α,k
2 νi,α

}
α=1,...,ni, k=1,...,∞

, X =
⊔
i∈Γ0

Xi (5a)

XT
i =

{
xT
i,α,k = q

λTi,α,k
1 qk−1

2 νi,α

}
α=1,...,ni, k=1,...,∞

, XT =
⊔
i∈Γ0

XT
i (5b)

with the transposed partition denoted by (λT
i,α)i∈Γ0,α=1,...,ni . The map (λi,α,k)→ (xi,α,k)

corresponds to that from the Young diagram to the Maya diagram. We remark that
the first expression is manifestly symmetric under exchange q1 ↔ q2, but it becomes
not manifest in the second one.

We define the degree-m character of the universal sheaf, obtained through the
Adams operation,

Y
[m]
i = (1− qm1 )

∑
x∈Xi

xm , (6)

which is given by a degree-m power sum symmetric polynomial of infinitely many
variables. This is called the gauge invariant; single trace; chiral ring; observable in
the context of supersymmetric gauge theory. Then we define the t-extended partition
function [11, 12]

Z(t) =
∑
k

qk
∫
Mn,k

exp

(∑
i∈Γ0

∞∑
m=1

ti,mY
[m]
i

)
, (7)



which plays a role as the generating function: The derivative with the conjugate t-
variable gives rise to the expectation value of the observable〈

Y
[m]
i

〉
=

∂

∂ti,m
logZ(t)

∣∣∣
t→0

. (8)

This operator average is taken with respect to the plain partition function (2) given
by Z(t = 0) = Z.

3. Z-state
Since, as mentioned above, the universal sheaf character is given by the power sum
polynomial with infinite variables, we can consider the operator formalism using the
free field realization. (See, for example, [13] and also [14].) Namely, identifying the

derivative with the t-variable with the observable, ti,−m := ∂/∂ti,m ↔ Y
[m]
i , we obtain

the Heisenberg algebra, [ti,−m, tj,m′ ] = δi,jδm,m′ . In this sense, the t-variable is promoted
to the operator generating the Fock space F = C[[ti,1, ti,2, · · · ]]|0〉 with the vacuum
state annihilated by any negative modes ti,−m|0〉 = 0 for m > 0. Thus, the t-extended
partition function, depending on the t-variables, is also promoted to an operator. From
this point of view, we define the Z-state through the operator/state correspondence,

|Z〉 = Z(t)|0〉 . (9)

It has been shown that the Z-state for Γ-quiver gauge theory compactified on a cir-
cle R4 × S1 is generated by the screening charge associated with quiver W-algebra
Wq1,q2(Γ):

Z-state [5]

Let i : X → Γ0, such that i(x) = i for x ∈ Xi. Then the Z-state is generated by
screening charges of the algebra Wq1,q2(Γ),

|Z〉 =
�∏
x∈X̊

Si(x),x|0〉 . (10)

The configuration X̊ is defined with the empty configuration (λi,α) = ∅,

X̊i = {x̊i,α,k = qk−1
1 νi,α}α=1,...,ni,k=1,...,∞ , X̊ =

⊔
i∈Γ0

X̊i . (11)

The screening charge is defined as a discrete sum (could be formulated using Jackson
integral) of the screening current

Si,x =
∑
k∈Z

Si,qk2x (12)

with the free field realization

Si,x = : exp

(
si,0 log s+ s̃i,0 +

∑
m 6=0

si,m x
−m

)
: (13)



and the commutation relations[
si,m, sj,m′

]
= − 1

m

1− qm1
1− q−m2

c
[m]
ji δm+m′,0 ,

[
s̃i,0, sj,m

]
= −βδ0,mc

[0]
jk , β = −ε1

ε2
. (14)

The matrix (c
[m]
ij ) is the mass-deformed q-Cartan matrix, which is reduced to the ordi-

nary quiver Cartan matrix in the limit m→ 0,

c
[m]
ij = (1 + q−m)δij −

∑
e:i→j

µ−me −
∑
e:j→i

µeq
−m

m→0−→ 2δij −#(e : i→ j)−#(e : j → i) (15)

where (µe)e∈Γ1 is the multiplicative bifundamental mass parameter. The mass defor-
mation plays an essential role to define the algebra, in particular, associated to the
affine quiver. See Sec. 5. We remark the transposition c

[m]
ji = q−mc

[−m]
ij .

The Z-state (10) is responsible for the vector and bifundamental hypermultiplets.
To obtain the (anti)fundamental hypermultiplet contribution, we insert additional ver-
tex operators

|Z〉 =

(∏
x∈Xf

Vi(x),x

) �∏
x∈X̊

Si(x),x

( ∏
x∈Xaf

Vi(x),x

)
|0〉 (16)

where Xf = {µi,f}i∈Γ0,f=1,...,nf
i

and Xaf = {µ̃i,f}i∈Γ0,f=1,...,naf
i

are sets of the multiplicative
fundamental and antifundamental mass parameters, obeying the OPE

Vi,xSi,x′ =

(
x′

x
; q2

)−1

∞
: Vi,xSi,x′ : , Si,x′Vi,x =

(
q2
x

x′
; q2

)
∞

: Vi,xSi,x′ : . (17)

The q-Pochhammer symbol is defined as (z; q)n =
n−1∏
m=0

(1− zqm).

Since the dual vacuum obeys 〈0|ti,m = 0 for m > 0, the plain partition function
given by imposing t = 0 is correspondingly given as a correlator

Z(t = 0) = 〈0|Z(t)|0〉 . (18)

Such a correlator realization of the partition function (18) resembles the AGT rela-
tion [3], which states that the gauge theory partition function with gauge group G
is given by a conformal block of W (G) algebra, while quiver W-algebra is sensitive
to quiver structure, but not to G. The relation between these two descriptions is
understood as a base/fibre (geometry); spectral (integrable system); S-duality (string
theory). We also remark that the expression (18) immediately leads to the discretized
version of the Dotsenko–Fateev integral

Z(t = 0) =
∑
X

ZX (t = 0) =
∑
X

〈0|

(∏
x∈Xf

Vi(x),x

)(
�∏
x∈X

Si(x),x

)( ∏
x∈Xaf

Vi(x),x

)
|0〉 .

(19)



Namely, each contribution from the fixed point configuration X is given by a correlator
of the screening currents with the vertex operators. In other words, the screening
current generates the contribution associated with a specific configuration

|ZX 〉 =

(∏
x∈Xf

Vi(x),x

)(
�∏
x∈X

Si(x),x

)( ∏
x∈Xaf

Vi(x),x

)
|0〉 . (20)

Although this correlator involves infinitely many operators, one can truncate the num-
ber of screening charges by considering the codimension-2 defect. See, for example, [15].

4. Quiver W-algebra
We define another vertex operator, called the Y-operator:

Yi,x = qρ̃i1 : exp

(
yi,0 +

∑
m 6=0

yi,m x
−m

)
: (21)

where (ρ̃)i∈Γ0 is the Weyl vector in the simple root basis (as long as det(c
[0]
ij ) 6= 0), and

the commutation relations are defined[
yi,m, sj,m′

]
= − 1

m
(1− qm1 )δi,jδm+m′,0 ,

[
s̃i,0, yj,0

]
= −δij log q1 . (22)

The OPE of Y-operator and the screening current is then given by

Yi,xSj,x′ =
1− x′/x

1− q1x′/x
: Yi,xSj,x′ : , Sj,x′Yi,x = q−1

1

1− x/x′

1− q−1
1 x/x′

: Yi,xSj,x′ : (i = j)

(23)

while this OPE becomes trivial if i 6= j. It gives rise to the commutation relation[
Yi,x, Sj,x′

]
=
(
1− q−1

1

)
δ

(
q1
x′

x

)
: Yi,xSj,x′ : (24)

where the multiplicative δ-function is defined δ(x) =
∑

n∈Z x
n. The Y-operator average

is computed using the OPE factor as follows:

〈0|Yi,x|ZX 〉 = qρ̃i1

∏
x∈Xi

1− x′/x
1− q1x′/x

〈0|ZX 〉 (25)

Since we have ∏
x∈Xi

1− x′/x
1− q1x′/x

= exp

(
∞∑
m=1

−x
−m

m
Y

[m]
i

)
, (26)

the Y-operator average plays a role of the generating function of the observable (8).
One can construct the generators of W-algebras using this Y-operator (the q-

Sugawara construction): It has been shown in [5] that the generating currents of quiver
W-algebra Wq1,q2(Γ) is given by the operator-valued qq-character associated with quiver
Γ, which turns out to be a commutant of the screening charge. We define the iWeyl
reflection incorporated by the A-operator

Yi,x −→ Yi,x A
−1
i,q−1 (27)



with the definition

Ai,x = q1 : exp

(
ai,0 +

∑
m6=0

ai,m x
−m

)
: (28)

where

ai,m =
∑
j∈Γ0

yj,m c
[m]
ji . (29)

Thus the A-operator is written in terms of the Y-operators. Let us write down the
commutation relations for the free fields:[

yi,m, yj,m′
]

= − 1

m
(1− qm1 )(1− qm2 ) c̃

[−m]
ij δm+m′,0 , (30)[

ai,m, aj,m′
]

= − 1

m
(1− qm1 )(1− qm2 ) c

[m]
ji δm+m′,0 . (31)

where (c̃
[m]
ij ) is the inverse of the q-Cartan matrix (15). We remark that, in the limit

q1(q2)→ 1, these commutation relations become trivial due to the factor (1−qn1 )(1−qn2 ),
which implies the quantum algebra becomes the classical commutative algebra: It still
holds the Poisson structure even in this limit.

The Y and A operators play roles of the weight and root vectors: The Weyl reflection
is generated by the root vector. Then the qq-character is given by

Ti,x = Yi,x + Yi,x A
−1
i,q−1 + · · · . (32)

Monomials generated by the reflection may include the Y-operators both in numerator
and denominator. We apply the iWeyl reflection as long as the Y-operator appears in
the numerator, which terminates within finite processes for finite type quiver Γ = ADE,
while it becomes an infinite series for affine/hyperbolic quiver. We remark that the
qq-character has the integral formula from the quiver variety associated with the quiver
Γ. See [16] for details.

Although the Y-operator does not commute with the screening charge as shown in
(24), the qq-character Ti,x commutes with the screening charge[

Ti,x, Sj,x′
]

= 0 , (33)

which implies the following:

The operator-valued qq-character provides the free field realization of the generating
current of the algebra Wq1,q2(Γ), which is a commutant of the associated screening
charge.

Let us demonstrate this statement with an example.

4.1. A1 quiver

Let us consider the simplest example: A1 quiver, consisting of a single node without
any edges. In this case, the fundamental qq-character is given by

T1,x = Y1,x + Y−1
i,q−1x (34)



which turns out to be the generating current of the q-deformed Virasoro algebra [2].
Then, in the classical limit, it is reduced to the fundamental representation character
of SU(2).

We can also consider higher representations of SU(2). The spin- `
2

((2`+1)-dimensional)
representation character is given by χ` = y` + y`−1 + · · · + y−`. Then the correspond-
ing qq-character is generated by the product of the Y-operators with ` arguments
w = (wf )f=1,...,`,

T1,w = : Y1,w1 · · ·Y1,w` : + · · ·

=
∑

I∪J={1,...,`}

∏
i∈I,j∈J

S

(
wi
wj

)
:
∏
i∈I

Y1,wiY
−1
1,q−1wj

: . (35)

where

S(z) =
(1− q1x)(1− q2x)

(1− x)(1− qx)
. (36)

We remark that this qq-character contains 2` terms, so that one cannot see decompo-
sition into the irreducible representations of SU(2). Nevertheless, the q-character [17]
of the corresponding representation is obtained from the qq-character in the limit

(wf ) → (qf−1
1 w), and then taking q2 → 1, since S(q−1

1 ) = 0 and S(qn1 )
q2→1→ 1 for

n ∈ Z\{−1, 0}.
In particular, the case with ` = 2 plays an important role to characterize the algebra

Wq1,q2(A1). Namely, one can obtain the OPE of the generating current T1,x [2]

f

(
x′

x

)
T1,xT1,x′ − f

( x
x′

)
T1,x′T1,x = −(1− q1)(1− q2)

1− q

(
δ

(
q
x′

x

)
− δ

(
q
x

x′

))
(37)

with the delta function δ(x) =
∑
n∈Z

xn, and the scalar factor arising from the OPE of

Y-operators f(z) = exp

(
∞∑
n=1

(1− qn1 )(1− qn2 )

n(1 + qn)
zn

)
. See the commutation relation of

the y-oscillators (30).

5. Affine quiver W-algebra
The formalism discussed in Sec. 4 is applicable to any quiver, including affine and
hyperbolic quivers. Here let us consider the simplest affine quiver Â0, consisting of a
single node with a loop edge. In this case, the mass deformation plays an essential role
for the q-Cartan matrix:

c[m] = 1 + q−m − µ−m − µmq−m m→0−→ 0 (38)

The parameter µ ∈ C× is called the multiplicative adjoint mass of 5d N = 1∗ theory.
In the massless limit, µ = 1, the q-Cartan matrix becomes trivial.

The qq-character is generated by the local reflection

Y1,x −→ S(µ−1) : Y−1
1,q−1Y1,µ−1xY1,µq−1x : . (39)

A remarkable feature of the affine quiver is that the qq-character does not terminate
within finite terms since the affine character is in general given by an infinite series.



In addition, the coefficients appearing in the qq-character are given by the Nekrasov
function with dual variables. See [5, 9] for details. In general, the qq-character of

Γ̂-quiver theory on the ALE space C̃2/Γ′ is dual to that of Γ̂′-quiver theory on C̃2/Γ.
This duality is interpreted as a generalization of [18], which is naturally understood
using the 8-dimensional setup, called the gauge origami [16].

6. Quiver elliptic W-algebra
The quiver W-algebra discussed so far arises from the 5d quiver gauge theory defined
on R4 × S1. Starting with the 6d gauge theory on R4 × T 2, one can define the elliptic
deformation of W-algebras. Let p be the elliptic nome p = exp(2π

√
−1τ) ∈ C× with

the modulus of the torus T 2 denoted by τ . In this case the partition function is given
by applying the elliptic class to the Chern characters,

Ip

[∑
k

xk

]
=
∏
k

θ(x−1
k ; p) (40)

with θ(z; p) = (z; p)∞(pz−1; p)∞, which is reduced to the Dolbeault index in the limit
p → 0. To obtain the free field realization, we apply the Clavelli–Shapiro’s doubling
trick [19]. For example, the Y-operator is given by

Yi,x = qρ̃i1 : exp

(
yi,0 +

∑
m6=0

(
y

(+)
i,m x

−m + y
(−)
i,m x

+m
))

: (41)

with [
y

(±)
i,m , y

(±)
j,m′

]
= ∓ 1

m
(1− q±m1 )(1− q±m2 ) c̃

[∓m]
ij δm+m′,0 . (42)

See [6] for details.

7. Fractional quiver W-algebra
We define a fractional quiver (Γ, d), which is a quiver Γ decorated with a set of pa-
rameters (di)i∈Γ0 . We assume di ∈ Z>0 so that it plays a role of the root length of the
corresponding algebra. We define a gauge theory partition function depending on (di)
by replacing the equivariant parameter as (q1, q2) → (qdi1 , q2). The universal sheaf for
the node i ∈ Γ0 is given by

Yi = (1− qdi1 )
∑
x∈Xi

x =:

(
di−1∑
r=0

qr1

)
yi (43)

where (yi)i∈Γ0 is the fractionalization of the universal sheaf

yi = (1− q1)
∑
x∈Xi

x . (44)

The fictionalized sheaf plays a fundamental role to construct the fractional quiver
W-algebra, which reproduces the q-deformed W-algebra of [8] for Γ 6= ADE. The
symmetrization of the q-Cartan matrix (15) is then given by

bij =
1− qdi1

1− q1

(1 + q−di1 q−1
2 )δij −

∑
e:i→j

µ−1
e

(1− qdi1 )(1− q−dj1 )

(1− q1)(1− q−dij1 )
−
∑
e:j→i

µeq
−dij
1 q−1

2

(1− qdi1 )(1− q−dj1 )

(1− q1)(1− q−dij1 )

(45)

where we omit the degree of the character and dij = gcd(di, dj). See [7] for details.
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