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概 要

The classical Dixmier-Douady theory describes the structure of continu-
ous trace C∗-algebras in terms of the third cohomology of their primitive
spectra. In 1989, Rosenberg formulated twisted K-theory in full generality
as the K-theory of a continuous trace C∗-algebra with its spectrum home-
omorphic to a prescribed space and with a prescribed third cohomology
class. Since then twisted K-theory has been extensively studied, partly
because its relationship with string theory was revealed in the late ’90s.
On the other hand, in the Elliott program of the classification of nuclear
C∗-algebras, the importance of a certain class of C∗-algebras with very sim-
ple structure, now known as strongly self-absorbing C∗-algebras, had been
recognized among the specialists long before their formal definition was in-
troduced by Toms-Winter in 2007. Recently, a surprising and unexpected
application of them was found by Dadarlat-Pennig, who showed that the
Dixmier-Douady theory can be generalized to every strongly self-absorbing
C∗-algebra in that the classical Dixmier-Douady theory is for the trivial C∗-
algebra, the complex numbers. Moreover, a generalized cohomology theory
arises from every strongly self-absorbing C∗-algebra, whose characteristic
classes have higher terms beyond the third cohomology. In this talk, I will
give an account of this theory for non-specialists.

1. Dixmier-Douady theory

1.1. C∗-algebras

We first introduce the notion of C∗-algebras. The reader is referred to standard text-

books [15] and [21] for the basics of C∗-algebras.

Let H be a Hilbert space. We denote by B(H) the set of bounded operators on H.

For T ∈ B(H), the operator norm of T is defined by

∥T∥ = sup
ξ∈H\{0}

∥Tξ∥
∥ξ∥

.

Then B(H) is a Banach space with respect to the operator norm, and at the same time

it is an algebra over C. Moreover, it has a ∗-operation assigning the adjoint operator

T ∗ to T , where T ∗ is characterized by ⟨Tξ, η⟩ = ⟨ξ, T ∗η⟩ for any ξ, η ∈ H.

Definition 1.1. A C∗-algebra is a subalgebra of B(H) closed under the norm topology

and the ∗-operation.
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In what follows, we assume that H is a separable infinite dimensional Hilbert space.

We denote by K(H), or K for simplicity, the set of compact operators on H, which is a

typical example of a C∗-algebra. A C∗-algebra A is said to be stable if A is isomorphic

to A⊗K. Since H ⊗H ∼= H, we have K⊗K ∼= K, and A⊗K is always stable for any

C∗-algebra A.

Although K often plays important roles in the theory of C∗-algebras, K itself is

regarded as a trivial C∗-algebra among specialists for various reasons: its structure is

well-understood, it has only one irreducible representation, A and A ⊗ K are Morita

equivalent, etc. However, being trivial or not of course depends on one’s perspective,

and the Dixmier-Douady theory shows one of few non-trivial aspects of K.

It is possible to give a Hilbert-space-free definition of C∗-algebras: an (abstract)

C∗-algebra A is a Banach ∗-algebra satisfying the C∗-condition ∥T ∗T∥ = ∥T∥2 for

any T ∈ A. For example, the set of complex valued continuous functions C(X) on a

compact Hausdorff space X is a C∗-algebra with ∗-operation f ∗(x) = f(x) and norm

∥f∥ = maxx∈X |f(x)|.
In what follows, we assume that X is a compact metric space, though many state-

ments hold for locally compact and paracompact X. For a C∗-algebra A, we denote

by C(X,A) the set of continuous A-valued functions on X, which is a C∗-algebra with

pointwise operations and norm ∥f∥ = maxx∈X ∥f(x)∥. This C∗-algebra is identified

with the tensor product C(X)⊗ A in an appropriate sense.

1.2. Dixmier-Douady theory

The classical Dixmier-Douady theory [10] says that continuous trace C∗-algebra A with

fixed spectrum X are completely classified by a characteristic class δ(A) ∈ H3(X,Z),
called the Dixmier-Douady class, up to stable isomorphism preserving C(X). The

reader is referred to [17] for detailed accounts of the Dixmier-Douady theory, and to

[20] for more friendly introduction.

A continuous trace C∗-algebra A is a continuous field of C∗-algebras over a space

X with fibers Morita equivalent to C satisfying the so-called Fell condition. Since the

stabilization A⊗K of A is always a locally trivial field with fibers isomorphic to K, we

avoid the complicated notion and technicality of continuous fields of C∗-algebras, the

spectrum of a C∗ algebra, etc, and we focus on locally trivial fields here.

Let p : E → X be a fiber bundle with fibers K and structure group Aut(K). Then the

set of continuous sections s : X → E, denoted by Γ(E), is a C∗-algebra with fiberwise

operations and norm ∥s∥ = maxx∈X ∥s(x)∥. A stable continuous trace C∗-algebra A is

nothing but the section algebra Γ(E) for some E as above, and we call it a locally trivial

continuous field of K over X. The same term is used if K is replaced with an arbitrary

C∗-algebra. Note that Γ(E) naturally comes with a C∗-subalgebra C(X). Whenever

we discuss isomorphisms between (locally trivial) continuous fields over X, we assume

that they leave C(X) fixed pointwise. We can introduce the Dixmier-Douady class

δ(A) ∈ H3(X,Z) for A = Γ(E) using the classical theory of fiber bundles. There are

two options to do it, via sheaf cohomology theory and via homotopy theory, and we

discuss them in order.



We denote by U(H) the set of unitary operators on H equipped with the strong

operator topology. It is known that every automorphism α of K is implemented by a

unitary U ∈ U(H), that is, α(T ) = AdU(T ) = UTU−1. Therefore we have a short

exact sequence of topological groups

0 → T → U(H) → Aut(K) → 0, (1.1)

where Aut(K) is equipped with the point norm topology. The key fact for the following

argument is that the group U(H) is contractible.

Recall that we have a fiber bundle p : E → X with A = Γ(E). Let {Vi}i∈I be an

open covering of X, and let hi : p
−1(Vi) → Vi × K be locally trivializations. Then we

get the transition functions αij : Vi ∩ Vj → Aut(K) satisfying

hi ◦ h−1
j (x, T ) = (x, αij(x)(T )), ∀x ∈ Vi ∩ Vj.

Passing to a refinement of {Vi}i∈I if necessary, we may assume that there exist contin-

uous functions Uij : Vi ∩ Vj → U(H) satisfying αij(x) = AdUij(x) for any x ∈ Vi ∩ Vj.
The cocycle relation αij(x)◦αjk(x) = αik(x) for x ∈ Vi∩Vj∩Vk and the exact sequence

(1.1) imply that there exist continuous functions tijk : Vi ∩ Vj ∩ Vk → T satisfying

Uij(x)Ujk(x) = tijk(x)Uik(x).

The family of functions {tijk} gives rise to a cohomology class δ(A) ∈ H2(X,S), where
S is the sheaf of the germs of continuous T-valued functions on X, and it is known

that H2(X,S) is isomorphic to the C̆ech cohomology group Ȟ3(X,Z). If δ(A) = 0, we

may choose {Vi}i∈I and Uij so that the cocycle relation Uij(x)Ujk(x) = Uik(x) holds

for any x ∈ Vi ∩ Vj ∩ Vk. Since U(H) is contractive, the cocycle {Uij} is a coboundary,

which means that the fiber bundle E is trivial, and we get A ∼= C(X,K).

Theorem 1.2 ([10]). The isomorphism classes of locally trivial continuous fields of K
over X is completely classified by the Dixmier-Douady class δ(A).

Let B be another locally trivial continuous field of K over X, that is, B is isomorphic

to a section algebra Γ(E ′) for another fiber bundle p′ : E ′ → X with fibers K and

structure group Aut(K). Then so is A⊗C(X) B, and we have

δ(A⊗C(X) B) = δ(A) + δ(B).

Indeed, the continuous field A⊗C(X)B is identified with the section algebra Γ(E⊗E ′),

which makes sense as we have K⊗K ∼= K, and it is easy to show the additivity of the

Dixmier-Douady class with respect to the fiberwise tensor product.

Corollary 1.3. The set BunX(K) of isomorphism classes of locally trivial fields over

X with fiber K becomes an abelian group isomorphic to H3(X,Z) under operation of

tensor product over C(X).

Now we discuss the second option, which is more appropriate for our purpose of

generalizing the Dixmier-Douady theory. The reader is referred to [8] for the basics of



algebraic topology. Recall that T is a K(Z, 1) space in the sense that

πi(T) =

{
{0}, i ̸= 1

Z, i = 1
,

and its universal cover R is contractible. Since U(H) is contractible, the exact sequence

(1.1) implies

πi(Aut(K)) =

{
{0}, i ̸= 2

Z, i = 2

that is, the group Aut(K) is a K(Z, 2) space, and its classifying space BAut(K) is a

K(Z, 3) space. Since the isomorphism classes of principal Aut(K)-bundles over X are

completely classified by the homotopy set

[X,BAut(K)] = [X,K(Z, 3)] ∼= H3(X,Z),

we get the Dixmier-Douady classification again.

The main point of the Dadarlat-Pennig theory is that the homotopy set

[X,BAut(D ⊗K)]

gives the first group E1
D(X) of a generalized cohomology theory E∗

D(X) for every

strongly self-absorbing C∗-algebra D, and the Dixmier-Douady theory is a special case

with D = C.

1.3. Twisted K-theory

The K-theory for C∗-algebras is a direct generalization of topological K-theory in the

sense that we have K∗(C(X)) = K∗(X). Since K∗(B ⊗ K) is canonically isomorphic

to K∗(B) for any C∗-algebra B, we have K∗(C(X,K)) = K∗(X). A natural question

arises: what happens if we replace the trivial continuous field C(X,K) of K with a

locally trivial one?

For τ ∈ H3(X,Z), the twisted K-theory Kτ+∗(X) in full generality was first intro-

duced by Rosenberg [18]. He defined it byK∗(A), where A is a locally trivial continuous

field of K over X whose Dixmier-Douady class δ(A) is τ . As in the case of K∗(X), the

twisted K-theory has the Atiyah-Hirzebruch spectral sequence, though differentials are

twisted by τ (see [2]).

For those interested in operator algebraic treatment of twisted K-theory and its

applications to string theory, we strongly recommend Rosenberg’s beautiful monograph

[19]. For purely topological treatment, the reader is referred to [11] and references

therein.

2. Strongly self-absorbing C∗-algebras

2.1. The basics of strongly-self-absorbing C∗-algebras

The notion of strongly self-absorbing C∗-algebras was introduced by Tom-Winter [22]

to single out the class of C∗-algebras playing distinguished roles in the classification of

nuclear C∗-algebras.



Definition 2.1. A unital C∗-algebra D is said to be strongly self-absorbing if there

exist an isomorphism ψ : D → D⊗D and a sequence of unitaries {Un}∞n=1 in U(D⊗D)

such that for any T ∈ D, we have

lim
n→∞

Un(T ⊗ I)U∗
n = ψ(T ).

The set of complex numbers C is an example of a strongly self-absorbing C∗-algebra

though it is often excluded in the literature. We summarize important properties of

strongly self-absorbing C∗-algebras from [22], [7], [23], and [6].

Theorem 2.2. Let D be a strongly self-absorbing C∗-algebra.

(1) D is simple nuclear either stably finite or purely infinite; if it is stably finite, then

it admits a unique trace.

(2) K0(D) has a ring structure with unit [1] given by [p][q] = [ψ−1(p ⊗ q)] ∈ K0(A)

for any projections p, q ∈ D, where ψ is an isomorphism from D onto D ⊗D.

(3) K1(D) = {0} if D satisfies the UCT.

(4) Aut(D) is contractible.

(5) Aut0(D ⊗K) has homotopy type of a CW-complex.

A C∗-algebra A is said to be nuclear if the algebraic tensor product A⊙B has a unique

C∗-cross norm for any C∗-algebra B. Nuclearity is equivalent to a nice approximation

property, and it is closed under various basic operation, such as inductive limit. Every

commutative C∗-algebra is nuclear. K and the matrix algebra Mn are nuclear.

Pure infiniteness and stable finiteness are mutually exclusive properties. A unital C∗-

algebra is purely infinite, if for any a ∈ A \ {0} there exist b, c ∈ A satisfying bac = 1.

A trace τ of a C∗-algebra A is a linear functional τ : A → C of norm 1 satisfying

τ(ab) = τ(ba) and τ(a∗a) ≥ 0 for any a, b ∈ A. For a separable unital nuclear simple

C∗-algebra A, stable finiteness is equivalent to having a trace.

Note that ψ in (2) is unique up to approximately unitary equivalence, and the ring

structure does not depends on the choice of ψ. The assumption in (3) is harmless

because there is no known example of a C∗-algebra not satisfying the UCT.

All the known strongly self-absorbing C∗-algebras other than C are in the following

list: the Cuntz algebras O2 and O∞, the UHF algebras of infinite type, the Jiang-Su

algebras Z, and the tensor product of the Cuntz algebra O∞ and the UHF algebras of

infinite type. We briefly describe these examples below.

2.2. The Cuntz algebras O2 and O∞

Let n be an integer greater than 1. The Cuntz algebra On is the universal C∗-algebra

generated by n isometries {Si}ni=1 obeying the the following two relations

S∗
i Sj = δi,j1,

n∑
i=1

SiS
∗
i = 1.



For n = ∞, we define the Cuntz algebra O∞ by imposing only the first relation. Their

K-groups are

K∗(On) ∼=

{
Z/(n− 1)Z, ∗ = 0

{0}, ∗ = 1
,

where Z/∞Z is understood as Z.
The Cuntz algebras are typical examples of Kirchberg algebras, separable nuclear

simple purely infinite C∗-algebras. The Cuntz algebras O2 and O∞ are strongly self-

absorbing, and they play special roles in the Kirchberg-Phillips classification theorem

of Kirchberg algebras (see [16]). O2 has trivial K-theory, and it plays the role of 0,

that is, we have O2 ⊗ A ∼= O2 for any unital simple separable nuclear C∗-algebra A.

On the other hand, O∞ is KK-equivalent to C, having the same K-theory as C, and
it plays the role of 1 among Kirchberg algebras, that is, we have O∞ ⊗B ∼= B for any

Kirchberg algebra B.

2.3. The UHF algebras of infinite type

Recall that the n by nmatrix algebraMn is identified with B(Cn) and it is a C∗-algebra.

The UHF algebras are infinite tensor products of matrix algebras. More precisely, let

{nk}∞k=1 be a sequence of integers greater than 1. We set

Am = Mn1 ⊗Mn2 ⊗ · · · ⊗Mnm ,

which is isomorphic to Mn with n =
∏m

k=1 nk. Embedding Am into Am+1 by a 7→
a⊗1Mnm+1

, we get an inductive system of C∗-algebras {Am}∞m=1. The norm completion

of the inductive limit of the system is a C∗-algebra, which is the infinite tensor product

of {Mnk
}∞k=1 in the category of C∗-algebras. Since K1(Mn) = {0}, the K1-group is

trivial for any UHF algebra. Since Mn has a trace, so does any UHF algebra, and it is

stably finite.

A UHF algebra A is said to be of infinite type if A⊗A is isomorphic to A. The most

important UHF algebra of infinite type is the universal UHF algebra MQ obtained by

setting nk = k!, which absorbs any UHF algebra by tensor product. The notation MQ

comes from the fact K0(MQ) = Q. Another example of a UHF algebra of infinite type

is Mn∞ obtained by setting nk = n for any k, which has K0(Mn∞) = Z[ 1
n
].

2.4. Jiang-Su algebra Z
The Jiang-Su algebra Z constructed in [13] is a mysterious stably finite C∗-algebra

without having projections other than 0 and 1. It is KK-equivalent to C, having

K0(Z) = Z and K1(Z) = {0}. It is absorbed by every strongly self-absorbing C∗-

algebra by tensor product (see [23]). In fact, whether a given C∗-algebra absorbs Z or

not is the most important criterion of classifiability of it (see [14]).

3. Dadarlat-Pennig theory

Dadarlat-Pennig [4], [5], [6] developed a Dixmier-Douady theory for an arbitrary strongly

self-absorbing C∗-algebra D in the manner that the classical Dixmier-Douady theory

is a special case with D = C.



Theorem 3.1 ([6]). Let X be a compact metrizable space, and let D be a strongly self-

absorbing C∗-algebra. The set BunX(D ⊗ K) of isomorphism classes of locally trivial

fields over X with fiber D ⊗ K becomes an abelian group under operation of tensor

product over C(X). Moreover, the group is isomorphic to E1
D(X), the first group of

a generalized connective cohomology theory E∗
D(X) defined by the infinite loop space

BAut(D ⊗K).

For a pointed topological space E, we denote by ΩE the loop space of E, that is,

ΩE = {f ∈ Map([0, 1], E); f(0) = f(1) = ∗}.

A topological space E = E0 is said to be an infinite loop space if there exists a sequence

of topological spaces {En}∞n=1 such that ΩEn is homotopy equivalent to En−1. Such

a sequence is called an Ω-spectrum, and it gives rise to a generalized cohomology via

the homotopy sets [X,En]. In the above theorem, we have E0 = Aut(D ⊗ K) and

E1 = BAut(D ⊗K).

Note that the E2-page of the Atiyah-Hirzebruch spectral sequence for E∗
D(X) is given

by

Ep,q
2 = Hp(X,Eq

D(pt)) = Hp(X, π−q(Aut(D ⊗K))),

which vanishes for p < 0 and for q > 0. Thus we need to compute the homotopy groups

of Aut(D ⊗ K) to extract information of the generalized cohomology theory E∗
D(X).

In fact, Dadarlat [3] computed the homotopy groups of the automorphism groups of

the Kirchberg algebras, and Dadarlat-Pennig [6] obtained the following result along

the same line. Recall that K0(D) has a ring structure (see Theorem 2.2). It also has

a positive cone K0(D)+ generated by the classes represented by projections.

Theorem 3.2. Let D be a strongly self-absorbing C∗-algebra not isomorphic to C.
Then

π0(Aut(D ⊗K)) ∼= K0(D)×+,

πi(Aut(D ⊗K)) ∼= Ki(D), i ≥ 1.

If moreover D satisfies the UCT,

π2i(Aut(D ⊗K)) ∼=

{
K0(D)×+, i = 0

K0(D), i ≥ 1
,

π2i−1(Aut(D ⊗K)) ∼= {0}.

We recall the K-groups of known strongly self-absorbing C∗-algebras in the table.

O2 O∞ O∞ ⊗Mn∞ O∞ ⊗MQ Mn∞ MQ Z
K0(D) {0} Z Z[ 1

n
] Q Z[ 1

n
] Q Z

K0(D)×+ {0} {1,−1} Z[ 1
n
]× Q× Z[ 1

n
]×+ Q×

+ {1}

Since the differentials of the Atiyah-Hirzebruch spectral sequence are known to be

torsion operators, we get



Corollary 3.3. (1)

BunX(MQ ⊗K) ∼= H1(X,Q×
+)⊕

⊕
k≥1

H2k+1(X,Q),

BunX(O∞ ⊗MQ ⊗K) ∼= H1(X,Q×)⊕
⊕
k≥1

H2k+1(X,Q).

(2) If H∗(X,Z) is torsion free,

BunX(Z ⊗K) ∼=
⊕
k≥1

H2k+1(X,Z),

BunX(O∞ ⊗K) ∼= H1(X,Z/2Z)⊕
⊕
k≥1

H2k+1(X,Z).

4. Dynamical realization problem

Let G be a discrete group whose classifying space BG can be chosen to be a finite CW-

complex, and let EG be its universal covering space. For a G-action α : G → Aut(A)

on a C∗-algebra A, we can construct a principal Aut(A)-bundle p : Pα → BG by

Pα = (EG× Aut(A))/G, where the G-action on EG× Aut(A) is given by

g · (x, γ) = (gx, αg ◦ γ),

and p is the projection onto the first coordinate. Note that the principal bundle Pα has

the same information as that of the associated bundle E = Pα×Aut(A)A, or equivalently,

the section algebra Γ(E) together with C(BG). Thus we may abuse the notation to

write [Pα] ∈ BunBG(A) instead of [Γ(E)]. We denote by ABunBG(A) the collection

{[Pα]} of the classes in BunBG(A) coming from G-actions on A.

Assume A = D⊗K with a strongly self-absorbing D now. Let β be another G-action

on D⊗K. Then since (D⊗K)⊗ (D⊗K) ∼= D⊗K, the diagonal action α⊗ β is again

a G-action on D ⊗K, and in fact we have

[Pα⊗β] = [Pα] + [Pβ].

Thus ABunBG(D ⊗K) forms a subsemigroup of BunBG(D ⊗K).

Question 4.1. Let G and D be as above. Does ABunBG(D ⊗ K) coincide with

BunBG(D ⊗K) ?

It is easy to see that the answer is negative for D = C in general. For any G-action

α : G → Aut(K), there exists a projective unitary representation U : G → U(H)

satisfying αg = AdUg. We get a 2-cocycle ω ∈ Z2(G,T) from UgUh = ω(g, h)Ugh,

which gives an invariant [ω] ∈ H2(BG,T) of the action α. On the other hand, the

exact sequence

0 → Z → R → T → 0

of coefficient modules implies the long exact sequence

· · · → H2(BG,T) → H3(BG,Z) → H3(BG,R) → · · ·



and the Dixmier-Douady class δ(Pα) is the image of [ω] in H3(BG,Z). Since δ(Pα)

vanishes in H3(BG,R), it is always a torsion class.

The situation could be completely different for D ̸= C as the structure of Aut(D⊗K)

is far richer than that of Aut(K). Although the following might be too ambitious a

conjecture, the author cannot resist mentioning it.

Conjecture 4.2. Let D be a strongly self-absorbing C∗-algebra satisfying the UCT

and D ̸= C. Let G be a discrete amenable group with BG a finite CW-complex. Then

ABunBG(D ⊗K) exhausts BunBG(D ⊗K).

As a first test case, assume that D = O∞ and dimBG ≤ 3. In this case, we have a

split exact sequence

0 → H3(G,Z) → BunBG(O∞ ⊗K) → H1(G,Z/2Z) → 0,

and H1(G,Z/2Z) is identified with Hom(G,Out(O∞⊗K)). In view of the recent work

of Hiroki Matui and the author [12] on poly-Z group-actions on Kirchberg algebras,

the conjecture looks plausible, at least in the case of dimBG ≤ 3.

A group G is poly-Z if there exists a subnormal series

{e} = G0 ≤ G1 ≤ · · · ≤ Gn = G,

satisfying Gk/Gk−1
∼= Z for any k = 1, 2, . . . , n. The number n is called the Hirsch

length of G, often denoted by h(G), which does not depend on the choice of the

subnormal series as above, and it coincides with the cohomological dimension of G. In

fact, there exists a free cocompact polynomial action of G on Rn (see [9]), and we can

choose EG = Rn and BG = Rn/G.

Matui and the author classified outer actions of poly-Z groups G with h(G) ≤ 3 on

any Kirchberg algebras, which verifies the conjecture in the corresponding particular

case. For example, every element in

BunT3(O∞ ⊗K) ∼= H1(T3,Z/2Z)⊕H3(T3,Z) ∼= (Z/2Z)3 ⊕ Z,

comes from a Z3-action on O∞ ⊗K.
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