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Abstract

Necessary conditions are obtained for certain types of rational delay differ-
ential equations to admit a transcendental meromorphic solution of hyper-
order less than one. The equations obtained include delay Painlevé equa-
tions and equations solved by elliptic functions. Difference analogue of
Nevanlinna theory is a central tool in the proofs of the main results. An
overview of this theory, as well as some of its applications to difference
Painlevé equations, are also presented.

1. Introduction
Existence of large classes of solutions that are meromorphic in the whole complex
plane is a rare property for differential equations. According to a classical result due
to Malmquist [30], if the first order differential equation

f ′ = R(z, f), (1)

where R(z, f) is rational in both arguments, has a transcendental meromorphic solu-
tion, then (1) reduces into the Riccati equation

f ′ = a2f
2 + a1f + a0 (2)

with rational coefficients a0, a1 and a2. In the second-order case Painlevé [35, 36],
Fuchs [9] and Gambier [10] classified all equations out of the class

f ′′ = F (z, f, f ′),

where F is rational in f and f ′ and analytic in z, which have the Painlevé property.
They obtained a list of 50 equations, out of which 44 could either be integrated in terms
of known functions, or mapped to another equation within the same list. The remaining
six equations are now known as the Painlevé equations. See for instance [5, 8, 17], and
references therein, for a comprehensive description of the known properties of these
equations.

The existence meromorphic solutions is a more common property in the case of
difference equations, than in the case of differential equations. Shimomura [42] proved
that the difference equation

f(z + 1) = P (f(z)),

where P (f(z)) is a polynomial in f(z) with constant coefficients, always has a transcen-
dental entire solution. On the other hand, Yanagihara [46] showed that the difference
equation

f(z + 1) = R(f(z)),
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where R(f(z)) is rational in f(z) having constant coefficients, has a non-trivial mero-
morphic solution, independently of the choice of R. Yanagihara [47] also considered
higher order equations and showed, for instance, that the difference equation

αnf(z + n) + αn−1f(z + n− 1) + · · ·+ α1f(z + 1) = R(f(z)), α1, . . . , αn ∈ C,

has a non-trivial meromorphic solution if the degree p of the numerator P (f(z)) of the
rational function R(f(z)) satisfies p ≥ q + 2, where q is the degree of the denominator
Q(f(z)) and P (f(z)) and Q(f(z)) have no common factors.

Ablowitz, Halburd and Herbst [1] suggested that the existence of sufficiently many
finite-order meromorphic solutions of a difference equation is an analogous to the
Painlevé property for difference equations. In order to support this claim they showed,
for example, that if the difference equation

f(z + 1) + f(z − 1) = R(z, f(z)), (3)

where R(z, f(z)) is rational in both arguments, has a transcendental meromorphic
solution of finite order, then degf (R(z, f(z))) ≤ 2. Their results are in line with the
earlier results by Yanagihara on the first order equation [46]. He proved that if

f(z + 1) = R(z, f(z)), (4)

where R(z, f(z)) is rational in both arguments, has a transcendental meromorphic
solution of hyper-order strictly less than one, then degf (R(z, f(z))) = 1 and thus
(4) reduces exactly into the difference Riccati equation. This is a natural difference
analogue of Malmquist’s result on differential equations. Halburd and the author [20]
showed that if (3), where the right hand side has meromorphic coefficients, has an
admissible meromorphic solution f of finite order, then either f satisfies simultaneously
a difference Riccati equation, or a linear transformation of (3) reduces it into one in
a short list of difference equations which consists of difference Painlevé equations and
equations related to them, linear equations and linearizable equations. These results
give strong supporting evidence that the approach by Ablowitz, Halburd and Herbst is
a good complex analytic difference analogue of the Painlevé property. The finite-order
condition was relaxed into hyper-order strictly less than one by Halburd, the author
and Tohge [23]. We will give a short overview of these results in the following section.

2. Difference Painlevé equations
We denote by S(f) the set of all meromorphic functions g such that T (r, g) = o(T (r, f))
for all r outside of a set with finite logarithmic measure. We say that a meromorphic
solution f(z) of a difference equation is admissible if all coefficients of the equation are
in S(f). In other words, the solution has faster growth than any of the coefficients in
the sense of Nevanlinna theory. For instance, all transcendental meromorphic solutions
of an equation with rational coefficients are admissible.

Theorem 2.1 ([20, 23]). If the equation

f(z + 1) + f(z − 1) = R(z, f(z)), (5)

where R(z, f(z)) is rational and irreducible in f(z) and meromorphic in z, has an
admissible meromorphic solution of hyper-order less than one, then either f(z) satisfies
a difference Riccati equation

f(z + 1) =
p(z + 1)f(z) + q(z)

f(z) + p(z)
, (6)



where p, q ∈ S(f), or equation (5) can be transformed by a linear change in f(z) to
one of the following equations:

f(z + 1) + f(z) + f(z − 1) =
π1(z)z + π2(z)

f(z)
+ κ1(z) (7)

f(z + 1)− f(z) + f(z − 1) =
π1(z)z + π2(z)

f(z)
+ (−1)zκ1(z) (8)

f(z + 1) + f(z − 1) =
π1(z)z + κ1(z)

f(z)
+
π2(z)

f(z)2
(9)

f(z + 1) + f(z − 1) =
π1(z)z + π3(z)

f(z)
+ π2(z) (10)

f(z + 1) + f(z − 1) =
(π1(z)z + κ1(z))f(z) + π2(z)

(−1)−z − f(z)2
(11)

f(z + 1) + f(z − 1) =
(π1(z)z + κ1(z))f(z) + π2(z)

1− f(z)2
(12)

f(z + 1)f(z) + f(z)f(z − 1) = p(z) (13)

f(z + 1) + f(z − 1) = p(z)f(z) + q(z) (14)

where πk, κk ∈ S(f) are arbitrary periodic functions with period k.

Equation (7) arises from the theory of orthogonal polynomials (see e.g. [43]). It also
appears in the matrix model approach to the two-dimensional quantum gravity [2, 7].
Equation (7) is widely known as the discrete Painlevé I equation. It has continuous
limit f = −1/2 + ε2u, κ1 = −3, π1z + π2 = −(3 + 2ε4t)/4, ε → 0, which may be
used to map (7) to the Painlevé I equation u′′ = 6u2 + t [6]. In addition, equation
(7) possesses a Lax pair, and it may be integrated by using isomonodromy techniques
[7, 37]. Equation (9) is an alternate difference Painlevé I equation [6, 13]. It can also
be mapped to the continuous Painlevé I equation by a suitable continuous limit, and
its Lax pair has been given in [6]. Equation (10) is a known integrable equation with
continuous limits to Painlevé I and IV, and its Lax pair has been given in [16, 12].

Equation (12) was found in connection with unitary matrix models of two-dimensional
quantum gravity [38], and it was identified as the difference Painlevé II based on a con-
tinuous limit to the continuous Painlevé II equation. Equation (12) was also obtained
as a similarity reduction of the discrete mKdV equation [33]. It possesses many special
properties, including Lax pairs [27, 37], special Airy-type solutions [28, 41] and discrete
Miura and auto-Bäcklund transformations [13].

Many studies on equations (7)–(10) and (12) give strong evidence to suggest that
they are all integrable [11]. In addition to possessing many properties indicative of
integrability, including Lax pairs, they pass the singularity confinement test and have
zero algebraic entropy [15, 25, 34]. They are also a part of the coalescence cascade
for the discrete Painlevé equations [13]. Equation (11) is a slight variation of (12).
Equation (6) is a difference Riccati equation, and (14) a linear difference equation.
Equation (13) is linear in f(z)f(z−1) and possesses finite-order meromorphic solutions
of many choices of p. The list of equations (6) – (14) contains all known integrable
equations of the form (5) and apparently no non-integrable equations.

3. Delay differential Painlevé equations
Certain reductions of integrable differential-difference equations are known to yield de-
lay differential equations with formal continuous limits to (differential) Painlevé equa-



tions. For example, Quispel, Capel and Sahadevan [39] obtained the equation

f(z) [f(z + 1)− f(z − 1)] + af ′(z) = bf(z), (15)

where a and b are constants, as a symmetry reduction of the Kac-van Moerbeke equa-
tion. In addition they showed that equation (15) has a formal continuous limit to the
first Painlevé equation

f ′′ = 6f 2 + z. (16)

Moreover, they obtained an associated linear problem for equation (15) by extending
the symmetry reduction to the Lax pair for the Kac-van Moerbeke equation.

Painlevé-type delay differential equations were also considered in Grammaticos,
Ramani and Moreira [14] from the point of view of a type of singularity confinement
property. More recently, Viallet [45] has introduced a notion of algebraic entropy for
such equations.

The order of growth of a meromorphic function f is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f , and

ρ2(f) = lim sup
r→∞

log log T (r, f)

log r

is the hyper-order, also called as the iterated 2-order of f . In the following result [22]
we obtain a necessary condition of a class of rational delay differential equations to
admit a transcendental meromorphic solution of hyper-order less than one.

Theorem 3.1 ([22]). Let f(z) be a transcendental meromorphic solution of

f(z + 1)− f(z − 1) + a(z)
f ′(z)

f(z)
= R(z, f(z)) =

P (z, f(z))

Q(z, f(z))
, (17)

where a(z) is a rational function, P (z, f(z)) is a polynomial in f(z) having rational
coefficients in z, and Q(z, f(z)) is a polynomial in f(z) with roots that are non-zero
rational functions of z and not roots of P (z, f(z)). If the hyper-order of f(z) is less
than one, then

degf (P ) = degf (Q) + 1 ≤ 3 or degf (R) ≤ 1. (18)

We have used the notation degf (P ) = degf (P (z, f(z))) for the degree of P as
a polynomial in f and degf (R) = max{degf (P ), degf (Q)} for the degree of R as a
rational function of f .

If degf (R(z, f(z))) = 0 then equation (17) reduces into

f(z + 1)− f(z − 1) + a(z)
f ′(z)

f(z)
= b(z), (19)

where a(z) and b(z) are rational functions. Note that if b(z) ≡ pπia(z), where p ∈
N, then f(z) = C exp(pπiz), C 6= 0, is a one-parameter family of zero-free entire
transcendental finite-order solutions of (19) for any rational function a(z). However,
equation (19) with an arbitrary rational function a(z), and with b(z) ≡ pπia(z), is not



considered to be of Painlevé type unless a(z) is a constant. Therefore the existence
of at least one transcendental meromorphic solution having hyper-order less than one
is not enough to single out the delay Painlevé equation (15) from within (19) without
further assumptions. In the following theorem we will single out the equation (15) from
the class (19) by introducing an additional assumption that the meromorphic solution
has sufficiently many simple zeros.

In value distribution theory the notation S(r, f) usually means a quantity with the
growth o(T (r, f)) as r → ∞ outside of an exceptional set of finite linear measure.
In what follows we use a modified definition with a larger exceptional set of finite
logarithmic measure. We use the notation N(r, f) to denote the integrated counting
function of poles counting multiplicities and N(r, f) to denote the integrated counting
function of poles ignoring multiplicities.

Theorem 3.2. Let f(z) be a transcendental meromorphic solution of equation (19),
where a(z) 6≡ 0 and b(z) are rational functions. If the hyper-order of f(z) is less than
one and for any ε > 0

N

(
r,

1

f

)
≥
(

3

4
+ ε

)
T (r, f) + S(r, f), (20)

then the coefficients a(z) and b(z) are both constants.

In the next theorem we consider an equation outside of the class (17).

Theorem 3.3 ([22]). Let f(z) be a transcendental meromorphic solution of

f(z + 1)− f(z − 1) =
a(z)f ′(z) + b(z)f(z)

f(z)2
+ c(z), (21)

where a(z) 6≡ 0, b(z) and c(z) are rational functions. If the hyper-order of f(z) is less
than one and for any ε > 0

N

(
r,

1

f

)
≥
(

3

4
+ ε

)
T (r, f) + S(r, f), (22)

then (21) has the form

f(z + 1)− f(z − 1) =
(λ+ µz)f ′(z) + (νλ+ µ(νz − 1))f(z)

f(z)2
, (23)

where λ, µ and ν are constants.

At least in the special case µ = ν = 0 and λ 6= 0 the equation (23) has a multi-
parameter family of elliptic function solutions

f(z) = α [℘(Ωz; g2, g3)− ℘(Ω; g2, g3)] ,

where ℘ is the Weierstrass elliptic function, Ω, g2 and g3 are arbitrary, provided that
℘′(Ω; g2, g3) 6= 0 or ∞, and α2 = −λΩ/℘′(Ω; g2, g3). Moreover, when µ = 0, equation
(23) has a formal continuous limit to the first Painlevé equation obtained in the follow-
ing way: We take the limit ε→ 0 for fixed t = εz, where f(z) = 1−ε2y(t), λ = 2+O(ε)
and λν = −1

3
ε5 + O(ε6). Then equation (23) becomes d3y/dt3 = 12y dy/dt+ 1, which

integrates to d2y/dt2 = 6y2 + t − t0, for some constant t0. Replacing t with z + t0
gives the first Painlevé equation (16). Finally, when µ = 0 and λν 6= 0, equation



(23) is a symmetry reduction of the known integrable differential-difference modified
Korteweg-de Vries equation

vt(x, t) = v(x, t)2 (v(x+ 1, t)− v(x− 1, t)) ,

in which v(x, t) = (−2λνt)−1/2f(z), where z = x− (2ν)−1 log t.

4. Difference Nevanlinna theory
Nevanlinna theory has been applied recently to study meromorphic solutions of complex
difference equations [24, 26, 29, 3], and in particular, as we mentioned in the previous
sections, to detect integrability in discrete equations [1, 20, 21, 40, 22]. This has lead
to development of difference counterparts of many central results of Nevanlinna theory
as more efficient tools to study difference equations. The development of this differ-
ence Nevanlinna theory has enabled us to further understand the value distribution of
meromorphic functions also without any connections to difference equations.

In what follows we will give a brief outline of some of the key result in the difference
Nevanlinna theory without presenting proofs of the theorems.

The first result in this section is a difference analogue of the lemma on the loga-
rithmic derivative. For finite-order meromorphic functions this results was obtained
by Halburd and the author [18, 19], and, independently, by Chiang and Feng [3]. The
result was extended by Halburd, Tohge and the author [23] for meromorphic functions
of hyper-order less than one.

Theorem 4.1 ([23]). Let f(z) be a meromorphic function of hyper-order less than one,
let ε > 0, and let c ∈ C. Then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ρ2(f)−ε

)
as r →∞ outside of a set of finite logarithmic measure.

The following lemma turns out to be useful in dealing with shifts in Nevanlinna
characteristic and counting functions.

Lemma 4.2 ([23]). Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous func-
tion and let s ∈ (0,∞). If the hyper-order of T is strictly less than one, i.e.,

lim sup
r→∞

log log T (r)

log r
= ς < 1 (24)

and δ ∈ (0, 1− ς) then

T (r + s) = T (r) + o

(
T (r)

rδ

)
(25)

where r runs to infinity outside of a set of finite logarithmic measure.

Theorem 4.1 and Lemma 4.2 combined with methods from the Nevanlinna theory
yield some rather powerful results on the value distribution of meromorphic solutions
of hyper-order less than one of large classes of non-linear difference equations. We
state these results first and then give examples of their use by applying them to study
meromorphic solutions of difference Painlevé equations.

Let n ∈ N and let cj ∈ C, j = 1, . . . , n. A difference polynomial in f(z) is a function
which is polynomial in f(z+cj), j = 1, . . . , n, with meromorphic coefficients aλ(z) such
that T (r, aλ) = S(r, f) for all λ. The following theorem [18, 23] is a difference analogue
of the Clunie Lemma [4].



Theorem 4.3 ([18, 23]). Let f(z) be a non-constant meromorphic solution of hyper-
order less than one of

f(z)nP (z, f(z)) = Q(z, f(z)),

where P (z, f(z)) and Q(z, f(z)) are difference polynomials in f(z). If the degree of
Q(z, f(z)) as a polynomial in f(z) and its shifts is at most n, then

m
(
r, P (z, f(z))

)
= S(r, f).

Laine and Yang [29] have given a generalization of Theorem 4.3 for a larger class
of difference equations.

Example 4.4. In order to demonstrate how Theorem 4.3 can be used to obtain in-
formation about the density of poles of meromorphic solutions of hyper-order < 1 of
difference equations, we consider as an example the following difference Painlevé equa-
tion

f(z + 1) + f(z − 1) =
αz + β

f(z)
+

γ

f(z)2
(26)

with constant parameters α, β, γ. Suppose that f(z) is a transcendental meromorphic
function of hyper-order < 1. Then by considering (26) in the form

f(z)2(f(z + 1) + f(z − 1)) = (αz + β)f(z) + γ

we may apply Theorem 4.3 with P (z, f(z)) = f(z + 1) + f(z − 1) and Q(z, f(z)) =
(αz + β)f(z) + γ thus obtaining

m(r, f(z + 1) + f(z − 1)) = S(r, f). (27)

Since T (r, f(z + 1) + f(z − 1)) = 2T (r, f(z)) + O(log r) by an identity due to Valiron
[44] and Mohon’ko [31] and (26), equation (27) yields

N(r, f(z + 1) + f(z − 1)) = 2T (r, f(z)) + S(r, f). (28)

Finally, since N(r, f(z + 1) + f(z − 1)) ≤ 2N(r + 1, f(z)) = 2N(r, f(z)) + S(r, f) by
Lemma 4.2, we conclude by equation (28) that

N(r, f(z)) = T (r, f(z)) + S(r, f). (29)

In particular, this implies that all transcendental meromorphic solutions of hyper-order
< 1 of the difference Painlevé equation (26) have infinitely many poles.

The following theorem enables the analysis of the value distribution of solutions for
finite values. It is an analogue of a result due to A. Z. Mohon’ko and V. D. Mohon’ko
[32] on differential equations.

Theorem 4.5 ([18, 23]). Let f(z) be a non-constant meromorphic solution of hyper-
order less than one of

P (z, f(z)) = 0 (30)

where P (z, f(z)) is difference polynomial in f(z). If P (z, a(z)) 6≡ 0 for a meromorphic
function a ∈ S(f), then

m

(
r,

1

f(z)− a(z)

)
= S(r, f).



Consider again the difference Painlevé equation (26) as an example.

Example 4.6. If the parameter α is non-zero, then (26) does not have any constant
solutions. Therefore Theorem 4.5 yields

m

(
r,

1

f(z)− a

)
= S(r, f)

for all a ∈ C, provided that f(z) is of hyper-order < 1 as in Example 4.4. This in
particular implies that all transcendental meromorphic solutions of hyper-order < 1 of
the non-autonomous equation (26) have infinitely many a-points for all a ∈ C.

The following theorem is a difference analogue of the second main theorem, where,
instead of the usual ramification term involving the derivative of the considered mero-
morphic function f(z), there is a quantity expressed in terms of the difference operator
of f(z). Since periodic functions are the analogues of constants for exact differences,
it is natural to consider slowly moving periodic functions as target functions of f(z).

Theorem 4.7 ([18, 23]). Let c ∈ C, and let f be a meromorphic function of hyper-
order less than one such that ∆cf 6≡ 0. Let q ≥ 2, and let a1(z), . . . , aq(z) be distinct
meromorphic periodic functions with period c such that ak ∈ S(f) for all k = 1, . . . , q.
Then

m(r, f) +

q∑
k=1

m

(
r,

1

f − ak

)
≤ 2T (r, f)−N∆(r, f) + S(r, f)

where

N∆(r, f) := 2N(r, f)−N(r,∆cf) +N

(
r,

1

∆cf

)
.

Applications on Theorem 4.7 include difference versions of the deficiency relation
and of Picard’s theorem. Theorem 4.7 was generalized to holomorphic curves by Hal-
burd, Tohge and the author in [23].

References

[1] M. J. Ablowitz, R. Halburd, and B. Herbst, On the extension of the Painlevé property
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ance in quantum gravity, Commun. Math. Phys. 142 (1991), 313–344.

[8] A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Yu. Novokshenov, Painlevé transcendents,
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