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Abstract

In this talk, we will generalize distortion theorems for normalized holomor-
phic functions on the unit disc in C to normalized holomorphic mappings
on bounded symmetric domains in a higher dimensional complex Banach
space.

1. Introduction
Let U = {x ∈ C; |x| < 1} be the unit disc in C. A holomorphic function f : U −→ C is
said to be normalized if f satisfies the conditions f(0) = f ′(0)− 1 = 0. We first recall
the (Köbe) distortion theorem for a normalized univalent function on U.

Theorem 1.1
If f : U −→ C is a normalized univalent function, then

1− |x|
(1 + |x|)3

≤ |f ′(x)| ≤ 1 + |x|
(1− |x|)3

, x ∈ U.

The above estimates are sharp.

It is natural to consider higher dimensional version of the above distortion estimates.
We will generalize the condition ”normalized” to a complex Banach space.

Let BX = {z ∈ X; ∥z∥ < 1} be the open unit ball in a complex Banach space X
with the norm ∥ · ∥. A holomorphic mapping f : BX −→ X is said to be normalized if
f satisfies f(0) = 0, Df(0) = Id.

Can we directly extend the above distortion theorem to higher dimensions ? In fact,
we can easily find a counter-example in the following two dimensional case.

Example 1.2

Let f : U×U −→ C2 be defined by f(z1, z2) := (z1+200z32 , z2). Then f is biholomorphic,

and satisfies f(0, 0) = (0, 0). It follows from Df(z) =

(
1 600z22
0 1

)
that Df(0, 0) =

Id. Since ∥z∥ = ∥(z1, z2)∥ := sup{|z1|, |z2|}, we have ∥z∥ =
1

2
when z = (0,

1

2
). Then,

1 + ∥z∥
(1− ∥z∥)3

= 12 < 150 = |600z22 | ≤ sup
∥y∥=1

∥Df(z)(y)∥ = ∥Df(z)∥.

The above counter-example shows that we can not extend Theorem 1.1 to normal-
ized biholomorphic mappings in higher dimensional complex Banach spaces. So, we are
obliged to restrict to proper subclasses of the family of all normalized biholomorphic
mappings.
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In this talk, we will generalize distortion theorems for normalized holomorphic func-
tions on the unit disc in C to normalized holomorphic mappings on bounded symmetric
domains in a higher dimensional complex Banach space.

2. Preliminaries
Let X,Y be complex Banach spaces. We denote by L(X,Y ) the space of continuous
linear operators from X into Y with the standard operator norm. Let I be the identity
operator in L(X), where L(X) = L(X,X).

Let ∥ · ∥X be a norm on X and ∥ · ∥e denote the Euclidean norm on Cn. For
A ∈ L(X,Cn), let

∥A∥X,e = sup{∥Az∥e : ∥z∥X = 1}

and if X = Cn, let
∥A∥X = sup{∥Az∥X : ∥z∥X = 1}

and
∥A∥e = sup{∥Az∥e : ∥z∥e = 1}.

For each z ∈ X \ {0}, let

T (z) = {lz ∈ L(X,C) : lz(z) = ∥z∥X , ∥lz∥X,e = 1}.

This set is nonempty by the Hahn-Banach theorem.
The set of holomorphic mappings from a domain Ω ⊂ X into Y is denoted by

H(Ω, Y ). The set H(Ω, X) is denoted by H(Ω). A mapping f ∈ H(Ω, Y ) is said to be
biholomorphic if f(Ω) is a domain, the inverse f−1 exists and is holomorphic on f(Ω).
When Ω contains the origin, we say that a mapping f ∈ H(Ω) is normalized if f(0) = 0
and Df(0) = I.

The family of normalized biholomorphic mappings in H(Ω) will be denoted by
S(Ω). In the case of one complex variable, S(U) is the usual family S of normalized
univalent functions on the unit disc U. Let LS(Ω) be the family of normalized locally
biholomorphic mappings of Ω into X. Let Aut(Ω) denote the set of biholomorphic
automorphisms of Ω. A domain Ω is said to be homogeneous if for any x, y ∈ Ω, there
exists some mapping f ∈ Aut(Ω) such that f(x) = y. A point a ∈ Ω is called a
symmetric point if there exists σa ∈ Aut(Ω) such that σ2

a = IΩ and a is an isolated fix
point of σa. A domain Ω is said to be symmetric if all x ∈ Ω are symmetric points.

Every bounded symmetric domain in a complex Banach space is homogeneous.
Conversely, the open unit ball B of a Banach space admits a symmetry σ0(x) := −x
at 0 and if B is homogeneous, then B is a symmetric domain. Banach spaces with a
homogeneous open unit ball are precisely the JB*-triples ( see Kaup [41] ).

Definition 2.1 A complex Banach space X is called a JB∗-triple if there exists a triple
product

(x, y, z) ∈ X ×X ×X 7→ {x, y, z} ∈ X

satisfying

(i) {x, y, z} is symmetric bilinear in the outer variables, but conjugate linear in the
middle variable,

(ii) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}},



(iii) x□x ∈ L(X,X) is a hermitian operator with spectrum ≧ 0,

(iv) ∥{x, x, x}∥ = ∥x∥3

for a, b, x, y, z ∈ X, where the box operator x□y : X → X is defined by x□y(·) =
{x, y, ·}.

Example 2.2 (i) A complex Hilbert space H with inner product ⟨·, ·⟩ is a JB*-triple
with the triple product

{x, y, z} =
1

2
(⟨x, y⟩z + ⟨z, y⟩x).

(ii) The complex space Cn is also a JB∗-triple when it is equipped with the ℓ∞ norm
∥ · ∥∞ and the triple product

{x, y, z} = (xiyizi)1≤i≤n, x = (xi)1≤i≤n, y = (yi)1≤i≤n, z = (zi)1≤i≤n ∈ Cn.

The unit polydisc Un is the unit ball of (Cn, ∥ · ∥∞).

We introduce the Bergmann operator B(a, b) : X → X on a JB*-triple X for
a, b ∈ X defined by

B(a, b)(x) = x− 2{a, b, x}+ {a, {b, x, b}, a} (x ∈ X).

In particular, the fractional power B(x, y)r ∈ GL(X) exists for every r ∈ R in a natural
way (cf. Kaup [41, p.517]).

Let B be the unit ball of a JB∗-triple X. Then, for each a ∈ B, the Möbius
transformation ga defined by

ga(x) = a+B(a, a)1/2(IX + x□a)−1x,

is a biholomorphic mapping of B onto itself with ga(0) = a, ga(−a) = 0 and g−a = g−1
a .

We have
Dga(0) = B(a, a)1/2, Dg−a(a) = B(a, a)−1/2.

In any dimension, we have

∥B(a, a)−1/2∥ =
1

1− ∥a∥2
(2.1)

from Kaup [42, Corollary 3.6]. We remark that each g ∈ Aut(B) is a composite of a
Möbius transformation and a linear isometry, by Cartan’s uniqueness theorem, hence
it is true that

∥[Dg(0)]−1∥ =
1

1− ∥a∥2
(2.2)

whenever g ∈ Aut(B) satisfies g(0) = a.

Proposition 2.3 Let ga be as above. Then for any a ∈ B, ga extends biholomorphically
to a neighborhood of B and we have

[Dga(0)]
−1D2ga(0)(x, y) = −2{x, a, y}, (2.3)

∥Dga(0)∥ ≤ 1, (2.4)

Dgζa(0) = Dga(0), |ζ| = 1, (2.5)

ga(a) =
2

1 + ∥a∥2
a, (2.6)

ga(x) = x+ a− {x, a, x}+O(∥a∥2), (2.7)

[Dga(0)]
−1 = IX +O(∥a∥2). (2.8)



Moreover, we have

1

1− ∥g−z(w)∥2
≤ (1 + ∥w∥ · ∥z∥)2

(1− ∥w∥2)(1− ∥z∥2)
, z, w ∈ B. (2.9)

Lemma 2.4 Let B be the open unit ball of a complex Hilbert space H and let a ∈ B.
Then we have

∥B(a, a)1/2∥2 = ∥B(a, a)∥ =

{
(1− ∥a∥2)2 if dimH = 1
1− ∥a∥2 if dimH ≥ 2.

3. Distortion results for convex mappings

Let X and Y be Banach spaces and let G ⊂ X be a convex domain. A biholomorphic
mapping f ∈ H(G, Y ) is said to be convex if the image f(G) is convex in Y . Also, let
K(G) be the subfamily of S(G) consisting of convex mappings. We recall the distortion
theorem for a normalized convex univalent function on U.

Theorem 3.1
If f : U −→ C is a normalized convex univalent function, then

1

(1 + |x|)2
≤ |f ′(x)| ≤ 1

(1− |x|)2
, x ∈ U.

The above estimates are sharp.

About generalization of the above distortion theorem for convex functions, many
mathematicians have studied. Gong and Liu [19], Pfaltzgraff and Suffridge [56] ex-
tended to the Euclidean balls in Cn. It has been further generalized to the open unit
balls of complex Hilbert spaces by Hamada and Kohr [30, 31].

Zhu and Liu [67] have obtained the following distortion theorem for convex map-
pings f on the open unit balls of complex Banach spaces:

1

(1 + ∥x∥)2
≤ ∥Df(x)∥ ≤ 1 + ∥x∥

(1− ∥x∥)2
.

Let G be a domain in a Banach space X. For each (x, ξ) ∈ G×X, the infinitesimal
Carathéodory pseudometric γG(x, ξ) on G is defined by,

γG(x, ξ) = sup{|Dh(x)ξ| : h ∈ H(G,U), h(x) = 0}.

Each φ ∈ Aut(G) is an isometry in this pseudometric:

γG(x, ξ) = γG(φ(x), Dφ(x)ξ)

and for the open unit ball B in a Banach space X, one has γB(0, ξ) = ∥ξ∥. We note
that γU is the Poincaré metric on U (cf. Dineen [14, p.54]). We will make use of the
following distortion theorem in Hamada and Kohr [31, Remark 4] (see also Zhu and
Liu [67, Theorem 2.1]).



Lemma 3.2 Let B be the open unit ball in a Banach space X and let f : B → X be a
normalized convex mapping on B. Then we have

1− ∥x∥
1 + ∥x∥

γB(x, y) ≤ ∥Df(x)y∥ ≤ 1 + ∥x∥
1− ∥x∥

γB(x, y) (3.1)

for each x ∈ B and y ∈ X.

Theorem 3.3 Let B be the open unit ball of a JB*-triple X. Given a normalized
convex mapping f : B → X with derivative Df , we have, for a, b, x ∈ B and y ∈ X,

(i)
1

(1 + ∥x∥)2
≤ ∥Df(x)∥ ≤ 1

(1− ∥x∥)2
;

(ii)
(1− ∥x∥)∥y∥

(1 + ∥x∥)∥B(x, x)1/2∥
≤ ∥Df(x)y∥ ≤ ∥y∥

(1− ∥x∥)2
;

where B(x, x) : X → X is the Bergmann operator and ∥B(x, x)1/2∥ ≤ 1.

Remark 3.4 It has been proved by Zhu and Liu [67] the following distortion theorem
for convex mappings on the open unit balls of complex Hilbert spaces:

∥y∥
√
1− ∥x∥2

(1 + ∥x∥)2
≤ ∥Df(x)y∥ ≤ ∥y∥

(1− ∥x∥)2
. (3.2)

This result is generalized in Theorem 3.3 (ii) to homogeneous balls. In fact, by Lemma
2.4, we have that ∥B(x, x)1/2∥ =

√
1− ∥x∥2 for complex Hilbert spaces of dimension

greater than 1.
Zhu and Liu [67, Conjecture 2.2] conjectured that Theorem 3.3 (i) holds for convex

mappings on the open unit balls of complex Banach spaces. Our theorem is an affirma-
tive answer to this conjecture for convex mappings on homogeneous balls. Hamada and
Kohr [30] proved that the upper bound in Theorem 3.3 (i) is sharp for the open unit
balls of complex Hilbert spaces although the lower bound is not sharp for the Euclidean
balls of dimension at least 2 (cf. Liczberski [48]).

4. Distortion results for linearly invariant families
We begin this section with the notion of linearly invariant families on the unit ball
B of a complex Banach space X. Then we give the notion of norm-order and obtain
distortion results for linearly invariant families on the unit ball of finite dimensional
JB∗-triples (cf. Hamada, Honda and Kohr [26], Pfaltzgraff and Suffridge [56]).

Definition 4.1 Let B be the unit ball of a complex Banach space X. Then a family F
is called a linearly invariant family (L.I.F.) if the following conditions hold:

(i) F ⊂ LS(B);
and
(ii) Λϕ(f) ∈ F , for all f ∈ F and ϕ ∈ Aut(B).
Here Λϕ(f) is the Koebe transform of f given by

Λϕ(f)(z) = [Dϕ(0)]−1[Df(ϕ(0))]−1(f(ϕ(z))− f(ϕ(0))), z ∈ B.



Note that the Koebe transform has the group property Λψ ◦ Λϕ = Λϕ◦ψ.
If X = Cn and F is a linearly invariant family, we define two types of norm-order

of F (cf. Hamada, Honda and Kohr [26], Pfaltzgraff and Suffridge [56]), given by

∥ ord ∥e,1F = sup
f∈F

sup
∥w∥X=1

{
1

2
∥D2f(0)(w, ·)∥X,e

}
and

∥ ord ∥e,2F = sup
f∈F

sup
∥w∥X=1

{
1

2
∥D2f(0)(w,w)∥e

}
.

It is clear that ∥ ord ∥e,1F ≥ ∥ ord ∥e,2F . On the other hand, since

D2f(0)(z, w) =
1

2

{
D2f(0)(z + w, z + w)−D2f(0)(z, z)−D2f(0)(w,w)

}
,

we obtain ∥ ord ∥e,1F ≤ 3∥ ord ∥e,2F . Moreover, if X is a finite dimensional complex
Hilbert space, then ∥ ord ∥e,1F = ∥ ord ∥e,2F by Hörmander [38, Theorem 4].

We also define the trace-order of F (cf. Hamada, Honda and Kohr [27], Pfaltzgraff
[52]) given by

ordF = sup
f∈F

sup
∥w∥X=1

{
1

2

∣∣tr [D2f(0)(w, ·)
]∣∣} .

We now give some examples of linearly invariant families on the unit ball B of
a complex Banach space X (cf. Hamada, Honda and Kohr [26, 27], Pfaltzgraff and
Suffridge [55]).

Example 4.2 (i) K(B), the set of convex mappings in LS(B). If X is a finite
dimensional complex Hilbert space, then ∥ ord ∥e,1K(B) = 1 (see Pfaltzgraff and
Suffridge [56] and Hamada and Kohr [29]). On the other hand, it is known that
in the case of an n-dimensional complex Hilbert space with n ≥ 2, ordK(B) >
(n+ 1)/2 and ordK(B) is unknown (see Pfaltzgraff and Suffridge [55]).

(ii) S(B), the set of all biholomorphic mappings in LS(B). If X is a complex Hilbert
space of dimension n, where n > 1, the linearly invariant family S(B) does not
have finite trace-order (see Barnard, FitzGerald and Gong [2]; cf. Pfaltzgraff and
Suffridge [52]).

(iii) Uα(B), the union of all linearly invariant families contained in LS(B) with trace-
order not greater than α. This is a generalization of the universal linearly invari-
ant families Uα = Uα(∆) considered in Pommerenke [57].

(iv) If G is a nonempty subset of LS(B), then the linearly invariant family generated
by G is the family

Λ[G] = {Λϕ(g) : g ∈ G, ϕ ∈ Aut(B)}.

The linear invariance is a consequence of the group property of the Koebe trans-
form. Obviously, Λ[G] = G if and only if G is a linearly invariant family. In the
cases of the unit Euclidean ball and the unit polydisc of Cn, this example provided
a useful technique for generating many interesting mappings (see Pfaltzgraff [52],
Pfaltzgraff and Suffridge [54, 55]). For example, we can use a single mapping f
from LS(B) to generate the linearly invariant family Λ[{f}]. The family Λ[{i}],
generated by the identity mapping i(z) = z, consists of all the Koebe transforms
of i(z).



In the rest of this section, unless otherwise stated, let B be the homogeneous unit
ball of X = Cn, that is B is the unit ball of a finite dimensional JB∗-triple X. We also
assume that

inf{∥z∥e : z ∈ ∂B} = 1. (4.1)

This assumption is not so strong, because for any unit ball B of a finite dimensional
JB∗-triple X, there exists a constant c > 0 such that cB satisfies the equality (4.1).
Also, let

C1 = sup{∥z∥e : z ∈ ∂B}. (4.2)

Taking into account the relations (4.1) and (4.2), we deduce that

∥z∥X ≤ ∥z∥e ≤ C1∥z∥X , z ∈ X.

Also, since | tr(A)| ≤ n∥A∥e for all A ∈ L(X,Cn) by (4.1), we have

ordF ≤ n∥ ord ∥e,1F .

Theorem 4.3 Let B be the unit ball of a finite dimensional JB∗-triple X which satisfies
the condition (4.1). Let F be a linearly invariant family on B. Then ∥ ord ∥e,1F ≥ 1
holds.

Proof. Let

∥ ord ∥X,2F = sup
f∈F

sup
∥z∥X=1

{
1

2
∥D2f(0)(z, z)∥X

}
.

Then ∥ ord ∥X,2F ≥ 1 by Hamada, Honda and Kohr [26, Theorem 3.9]. Since ∥ ord ∥e,1F ≥
∥ ord ∥X,2F by (4.1), we obtain the theorem.

Let h0 be the Bergman metric on B at 0 and let

c(B) =
1

2
sup
z,w∈B

|h0(z, w)|.

The following result was obtained in Hamada, Honda and Kohr [27, Theorem 4.1].

Theorem 4.4 Let F be a linearly invariant family on the unit ball B of a finite di-
mensional JB∗-triple X. If ordF = αt < ∞, then

(1− ∥z∥X)αt−c(B)

(1 + ∥z∥X)αt+c(B)
≤ |detDf(z)| ≤ (1 + ∥z∥X)αt−c(B)

(1− ∥z∥X)αt+c(B)
, z ∈ B (4.3)

for all f ∈ F . If B is the Euclidean unit ball or the unit polydisc of Cn, then the above
estimates are sharp.

In view of Theorem 4.4, we may prove the lower bound for ∥Df(z)∥X,e, when f
belongs to a L.I.F. on the unit ball of a finite dimensional JB∗-triple X.

Theorem 4.5 Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies
the condition (4.1). Let F be a linearly invariant family on B. If ∥ ord ∥e,1F = α < ∞,
then

(1− ∥z∥X)α−c(B)/n

(1 + ∥z∥X)α+c(B)/n
≤ ∥Df(z)∥X,e ≤ C1

(1 + ∥z∥X)α−1

(1− ∥z∥X)α+1
, z ∈ B, (4.4)

for all f ∈ F , where C1 is a constant defined by (4.2).



Proof. Let ordF = αt. Since | detDf(z)| ≤ ∥Df(z)∥nX,e and αt ≤ nα by the
condition (4.1), the lower bound in (4.4) follows from the relation (4.3).

Next, let αX = ∥ ord ∥X,1F , where

∥ ord ∥X,1F = sup
f∈F

sup
∥w∥X=1

{
1

2

∥∥D2f(0)(w, ·)
∥∥
X

}
.

Then αX ≤ α in view of the relation (4.1), and

∥Df(z)∥X,e ≤ C1∥Df(z)∥X ≤ C1
(1 + ∥z∥X)αX−1

(1− ∥z∥X)αX+1
≤ C1

(1 + ∥z∥X)α−1

(1− ∥z∥X)α+1
,

by Hamada, Honda and Kohr [26, Theorem 4.2].

Let Bn be the Euclidean unit ball in Cn. Then Theorem 4.5 yields the following
particular case (compare Hamada, Honda and Kohr [26] and Pfaltzgraff and Suffridge
[56]). In view of Pfaltzgraff and Suffridge [56, Theorem 4.1], the upper estimate in
(4.5) is sharp and the lower estimate in (4.5) is not sharp.

Corollary 4.6 Let F be a linearly invariant family on Bn. If ∥ ord ∥e,1F = α < ∞,
then

(1− ∥z∥e)α−
n+1
2n

(1 + ∥z∥e)α+
n+1
2n

≤ ∥Df(z)∥e ≤
(1 + ∥z∥e)α−1

(1− ∥z∥e)α+1
, z ∈ Bn, (4.5)

for all f ∈ F .

If Un is the unit polydisc in Cn, then we obtain the following corollary, in view of
Theorem 4.5 (compare Hamada and Kohr [31]).

Corollary 4.7 Let F be a linearly invariant family on Un. If ∥ ord ∥e,1F = α < ∞,
then

(1− ∥z∥∞)α−1

(1 + ∥z∥∞)α+1
≤ ∥Df(z)∥X,e ≤

√
n
(1 + ∥z∥∞)α−1

(1− ∥z∥∞)α+1
, z ∈ Un, (4.6)

for all f ∈ F , where ∥ · ∥∞ denotes the maximum norm on Cn.

Open Problem 4.8 Are the estimates in the inequalities (4.6) sharp?

Theorem 4.9 Let B be the unit ball of an n-dimensional JB∗-triple X which satisfies
the condition (4.1). Let F be a linearly invariant family on B. If ∥ ord ∥e,1F = α < ∞,
then

(1− ∥z∥X)(2n−1)α+n−1−c(B)

(1 + ∥z∥X)(2n−1)α−n+1+c(B)∥w∥X ≤ Cn−1
1 ∥Df(z)w∥e , z ∈ B, w ∈ X,

for all f ∈ F , where C1 is a constant defined by (4.2).

Proof. If A ∈ L(Cn), then ∥A∥X,e ≥
√
λn, where 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn are the

eigenvalues of A∗A and √
λ1 ≤ inf{∥Aw∥e : ∥w∥X = 1}.



Also, | detA| =
√
λ1 · · ·λn ≤

√
λ1λ

(n−1)/2
n . Since αt ≤ nα, we obtain from Theorems

4.4 and 4.5 that

(1− ∥z∥X)nα−c(B)

(1 + ∥z∥X)nα+c(B)
≤ (1− ∥z∥X)αt−c(B)

(1 + ∥z∥X)αt+c(B)

≤ |detDf(z)| =
√
λ1 · · ·λn

≤
√
λ1λ

(n−1)/2
n

≤
√
λ1

(
C1

(1 + ∥z∥X)α−1

(1− ∥z∥X)α+1

)n−1

for all z ∈ B. Therefore, we have

(1− ∥z∥X)(2n−1)α+n−1−c(B)

(1 + ∥z∥X)(2n−1)α−n+1+c(B) ≤ Cn−1
1

√
λ1 ≤ Cn−1

1 ∥Df(z)w∥e

for all z ∈ B and w ∈ X with ∥w∥X = 1. This completes the proof.

5. Distortion results for Bloch mappings

Let U = {ζ ∈ C : |ζ| < 1} be the unit disc in C and let f : U → C be a holomorphic
function with f ′(0) = 1. The celebrated Bloch’s theorem states that f maps a domain
in U biholomorphically onto a disc with radius r(f) greater than some positive absolute
constant. The ‘best possible’ constant B for all such functions, that is,

B = inf{r(f) : f is holomorphic on U and f ′(0) = 1},

is called the Bloch constant. Bonk [3] proved the following distortion theorem.

Theorem 5.1 If f : U → C is a holomorphic function such that f ′(0) = 1 and
supζ∈U(1− |ζ|2)|f ′(ζ)| ≤ 1, then the real part ℜf ′(ζ) satisfies

ℜf ′(ζ) ≥ 1−
√
3|ζ|(

1− |ζ|√
3

)3 , |ζ| ≤ 1√
3
.

The above distortion theorem implies readily a result of Ahlfors [1] that the Bloch

constant B is greater than

√
3

4
. This lower bound was further improved by Bonk [3]

to B >

√
3

4
+ 10−14, and by Chen and Gauthier [7] to B ≥

√
3

4
+ 2× 10−4.

The notion of a Cn-valued Bloch mapping on a finite dimensional bounded sym-
metric domain, under the name of normal mapping of finite order, was first introduced
by Hahn [21]. Several equivalent definitions for complex-valued Bloch functions on a
finite dimensional bounded homogeneous domain have been given by Timoney [62].
Cn-valued Bloch mappings on the Euclidean ball of Cn have also been studied in Liu
[49]. The following definition for a Bloch mapping from a finite dimensional bounded
symmetric domain to Cn given by Hamada [23] is a direct extension of the one in
Timoney [62, Theorem 3.4 (4)] and Liu [49].



Definition 5.2 Let BX be the unit ball of a finite dimensional JB∗-triple X. A map-
ping f ∈ H(BX ,Cn) is called a Bloch mapping if the family

Ff = {f ◦ φ− f(φ(0)) : φ ∈ Aut(BX)}

is normal, that is, every sequence in Ff contains a subsequence converging uniformly
on compact subsets of BX .

Equivalently, f ∈ H(BX ,Cn) is a Bloch mapping if

∥f∥B = sup {∥D(f ◦ φ)(0)∥X,e : φ ∈ Aut(BX)} < ∞

(cf. Liu [49], Timoney [62]), where ∥f∥B is called the Bloch semi-norm of f .
For 1 ≤ K ≤ +∞, we will denote by β(BX ,Cn, K) the set of Bloch mappings

f ∈ H(BX ,Cn) with ∥f∥B ≤ K.
We note that, in the above definition of a Cn-valued Bloch mapping, we do not

require that the domain BX has the same dimension n, although this is the case in the
following results. We recall that an n-dimensional JB*-triple X is the complex space
(Cn, ∥ · ∥X) equipped with the Carathéodory norm ∥ · ∥X .

Definition 5.3 Let BX be the unit ball of an n-dimensional JB∗-triple X. We define
the prenorm ∥f∥0 of f ∈ H(BX ,Cn) by

∥f∥0 = sup
{
(1− ∥z∥2)c(BX)/n| detDf(z)|1/n : z ∈ BX

}
.

Bonk’s distortion theorem has been extended by Liu [49, Theorem 7] to the family
Hloc(Bn,Cn) of Cn-valued locally biholomorphic mappings on the Euclidean unit ball
Bn in Cn, as follows.

Theorem 5.4 If f ∈ Hloc(Bn,Cn), ∥f∥0 = 1 and detDf(0) = 1, then

| detDf(z)| ≥ ℜ detDf(z) ≥
exp

(
−(n+ 1)∥z∥

1− ∥z∥

)
(1− ∥z∥)n+1 , z ∈ Bn.

This inequality is sharp.

Bloch’s theorem fails in dimension 2. Nevertheless, one can define the Bloch constant
for various families of Bloch mappings in higher dimensions. Using the above distortion
theorem, lower and upper bounds for such a Bloch constant for Bn were obtained in
Liu [49]. For the class Hloc(Un,Cn) of locally biholomorphic mappings on the unit
polydisc Un in Cn, the following distortion theorem has been shown by Wang and Liu
[66, Theorem 3.2].

Theorem 5.5 If f ∈ Hloc(Un,Cn), ∥f∥0 = 1 and detDf(0) = 1, then

| detDf(z)| ≥ ℜ detDf(z) ≥
exp

(
−2n∥z∥
1− ∥z∥

)
(1− ∥z∥)2n

, z ∈ Un.

This inequality is sharp.

This theorem was also used in Wang and Liu [66] to derive a lower bound of the Bloch
constant for classes of locally biholomorphic Bloch mappings on Un.

Both the Euclidean unit ball and the unit polydisc in Cn are examples of bounded
symmetric domains in Cn. The following natural questions arise.



Question 5.6 Can we explain the difference of the exponents in the distortion bounds
in Theorems 5.4 and 5.5?

Question 5.7 Can we extend Bonk’s distortion theorem to other bounded symmetric
domains in Cn?

We give an affirmative answer to both questions in this talk and as an application,
we derive a lower bound of the Bloch constant for various classes of locally biholomor-
phic Bloch mappings on a finite dimensional bounded symmetric domain.

Theorem 5.8 Let BX be the unit ball of an n-dimensional JB∗-triple X. Let α ∈ (0, 1]
and let m(α) be the unique root of the equation

e−c(BX)x(1 + x)c(BX) = α (5.1)

in the interval [0,+∞). If f ∈ Hloc(BX ,Cn), ∥f∥0 = 1 and detDf(0) = α, then we
have

(i)

| detDf(z)| ≥ α

(1− ∥z∥)2c(BX)
exp

{
(1 +m(α))

−2c(BX)∥z∥
1− ∥z∥

}
(5.2)

for z ∈ BX ;
(ii)

| detDf(z)| ≤ α

(1 + ∥z∥)2c(BX)
exp

{
(1 +m(α))

2c(BX)∥z∥
1 + ∥z∥

}
(5.3)

for ∥z∥ ≤ m(α)

2 +m(α)
.

The estimates in (5.2) and (5.3) are sharp.

A special case of Theorem 5.8 asserts that

| detDf(z)| ≥ 1

(1− ∥z∥)2c(BX)
exp

{
−2c(BX)∥z∥

1− ∥z∥

}
for f ∈ Hloc(BX ,Cn), ∥f∥0 = 1 and detDf(0) = 1. This generalizes Theorems 5.4 and
5.5, and also explains the difference of the exponents in the first question.

Our results also generalize simultaneously other results on Bonk’s distortion theo-
rem for locally univalent Bloch functions in one complex variable in Bonk, Minda and
Yanagihara [4], Liu and Minda [50], and those for locally biholomorphic Bloch map-
pings in several complex variables in Wang [64]. We refer to Chu, Hamada, Honda and
Kohr [10], Hamada, Honda and Kohr [26, 27, 28] for other distortion theorems for nor-
malized locally biholomorphic mappings on unit balls of finite dimensional JB∗-triples.
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