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Abstract

We are going to explain explicit construction of general solutions to isomonodromy equations,
with the main focus on the Painlevé VI equation. We will start by deriving Fredholm determinant
representation of the Painlevé VI tau function. The corresponding integral operator acts in the
direct sum of two copies of L2(S1). Its kernel is expressed in terms of hypergeometric fundamental
solutions of two auxiliary 3-point Fuchsian systems whose monodromy is determined by monodromy
of the associated linear problem via a decomposition of CP1\{4 points} into two pairs of pants. In the
Fourier basis, this kernel is given by an infinite Cauchy matrix. It will be shown that the principal
minor expansion of the Fredholm determinant yields a combinatorial series representation for the
general solution to Painlevé VI in the form of a sum over pairs of Young diagrams.

1 Introduction
The goal of the talk is to explain explicit construction of general solutions of certain classes of monodromy
preserving deformation equations. We are going to focus on the paradigmatic example of the sixth
Painlevé equation.

The Painlevé VI equation describes isomonodromic deformations of the Fuchsian system

∂zΦ = ΦA(z),

A(z) =
A0

z
+

At
z − t

+
A1

z − 1
, Aν ∈ sl2,

(1.1)

with 4 regular singular points given by the simple poles of the 1-form A (z) dz on CP1. Three of these
points can be fixed as above at 0, 1,∞ by a Möbius transformation. The position of the 4th singularity
z = t (anharmonic ratio) will play below the role of time variable. The fundamental matrix Φ (z)
is holomorphic on the universal cover of C\{0, t, 1}. Its analytic continuation induces a monodromy
representation of the fundamental group, ρ : π1

(
CP1\{4 points}

)
→ SL (2,C). This defines the Riemann-

Hilbert map RH from the space P of parameters of the Fuchsian system to the spaceM of the relevant
monodromy data.

The requirement of conservation of monodromy upon variation of t yields a (Schlesinger) system of
matrix ODEs 

Ȧ0 =
[A0, At]

t
,

Ȧ1 =
[A1, At]

t− 1
,

A∞ := −A0 −At −A1 = const,

where the dots denote derivatives with respect to t. The latter system can be equivalently recast into a
single scalar 2nd order ODE

(
t(t− 1)ζ̈

)2

= −2 det

 2θ2
0 tζ̇ − ζ ζ̇ + θ2

0 + θ2
t + θ2

1 − θ2
∞

tζ̇ − ζ 2θ2
t (t− 1)ζ̇ − ζ

ζ̇ + θ2
0 + θ2

t + θ2
1 − θ2

∞ (t− 1)ζ̇ − ζ 2θ2
1

 , (1.2)

for the function ζ (t) = (t− 1) TrA0At + tTrA1At. The latter equation is nothing but Painlevé VI in a
disguised form, ζ (t) being closely connected to its non-autonomous hamiltonian. Four extra parameters
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θ0,t,1,∞ therein correspond to the conserved eigenvalues ±θν of Aν ; they also represent exponents of local
monodromy. The spaceM of monodromy data is 6-dimensional. Two remaining parameters encode Pain-
levé VI initial conditions. Finding the general solution of Painlevé VI thereby amounts to constructing
explicit inverse RH−1 of the Riemann-Hilbert map.

By 2012, several families of explicit solutions of Painlevé VI had been discovered. In all of them, one
has to impose constraints on monodromy — namely, on the parameters of the equation and, in most
cases, on the initial conditions:

• Riccati family. These PVI solutions correspond, up to Bäcklund transformations, to reducible
monodromy (1 constraint on θ’s, 1-parameter initial conditions).

• Picard family. Here the parameters are fixed and are Bäcklund-equivalent to θ0 = θt = θ1 = θ∞ = 1
4 ;

no constraints on the initial conditions.

• Algebraic solutions. There exists a finite number of equivalence classes of algebraic solutions, most
of which correspond to isolated points ofM; there are also continuous families depending on 1 or
2 complex parameters.

• 2F1 kernel determinant. The Fredholm determinant of the continuous hypergeometric kernel is
related to Painlevé VI [BD] in a way similar to the familiar expression of the Airy kernel determinant
(Tracy-Widom distribution) in terms of the Hastings-McLeod solution of Painlevé II. Here θt = 0
and the initial conditions form a 1-parameter family.

Looking for the general Painlevé VI transcendent, the last family of solutions may seem the most
promising candidate for generalizations. Yet the answer has been first found in [GIL12] in a different
form of combinatorial series involving a double sum over the set Y of Young diagrams. To formulate the
result, introduce the Painlevé VI tau function τVI (t) by [JMU]

ζ (t) = t (t− 1) ∂t ln τVI (t) . (1.3)

We also need to set up the notation for Young diagrams. Given λ ∈ Y drawn in English convention, λ′
denotes the conjugate diagram, λi and λ′j are the number of boxes in the ith row and jth column of λ,
and |λ| stands for the total number of boxes in λ. Let (i, j) be the box in the ith row and jth column of
λ ∈ Y, see Fig. 1. Its hook length is defined as hλ (i, j) = λi + λ′j − i− j + 1.

i

j

l3=3'

l2=5 | =l 17|

h
l
(   )=4

=(2,3)

Figure 1: Notation for Young diagrams.

Conjecture [GIL12]. General solution of the Painlevé VI equation (1.2) can be written as

τVI(t) = const ·
∑
n∈Z

einηB
(
~θ;σ + n; t

)
, (1.4a)

where B
(
~θ, σ; t

)
is a double sum over Young diagrams,

B
(
~θ, σ; t

)
= N θ1

θ∞,σ
N θt
σ,θ0

tσ
2−θ20−θ

2
t (1− t)2θtθ1

∑
λ,µ∈Y

Bλ,µ
(
~θ, σ
)
t|λ|+|µ|, (1.4b)
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Bλ,µ
(
~θ, σ
)

=
∏

(i,j)∈λ

(
(θt + σ + i− j)2 − θ2

0

)(
(θ1 + σ + i− j)2 − θ2

∞

)
h2
λ(i, j)

(
λ′j − i+ µi − j + 1 + 2σ

)2 ×

×
∏

(i,j)∈µ

(
(θt − σ + i− j)2 − θ2

0

)(
(θ1 − σ + i− j)2 − θ2

∞

)
h2
µ(i, j)

(
µ′j − i+ λi − j + 1− 2σ

)2 ,

(1.4c)

N θ2
θ3,θ1

=

∏
ε=±G (1 + θ3 + ε(θ1 + θ2))G (1− θ3 + ε(θ1 − θ2))

G(1− 2θ1)G(1− 2θ2)G(1 + 2θ3)
. (1.4d)

Here σ /∈ Z/2, η are two arbitrary complex parameters representing the initial conditions, and G (z)
denotes the Barnes G-function; its only property relevant for the above is the recurrence relation
G (z + 1) = Γ (z)G (z).

The above gives a series representation for τVI(t) around t = 0. Similar expansions can be written
around the two other branch points t = 1,∞. The leading terms of these series reproduce Jimbo’s
asymptotic formula for Painlevé VI [Jim]. The parameters σ, η are Fenchel-Nielsen type coordinates on
the spaceM of monodromy data.

The nontrivial part of the claim of [GIL12] is the equation (1.4a) together with the identification of
the function B

(
~θ, σ; t

)
with the four-point c = 1 conformal block of the Virasoro algebra. Combinatorial

representation of this function is a consequence of the correspondence [AGT] between 2D conformal field
theories and 4D supersymmetric gauge theories. By now, the former statement is well understood in
the CFT framework [ILT, BSh1], and has been extended to the Garnier system [ILT] as well as to some
irregular [GIL13, Nag1, Nag2] and q-difference [BSh2, JNS] isomonodromic problems.

The question that we want to address here is how to prove combinatorial formulas of the above
conjecture rigorously and directly, i.e. bypassing the use of CFT arguments and AGT correspondence.
The plan of the proof is as follows:

1. First we are going to transform the 4-point Fuchsian system (1.1) into a Riemann-Hilbert problem
on a circle, where the appropriate jump matrix involves solutions of two auxiliary 3-point Fuchsian
systems.

2. Next we will establish a Fredholm determinant representation of τVI(t). The corresponding integral
operator acts in the direct sum of two copies of L2(S1), and its kernel is expressed in terms of
hypergeometric 3-point solutions.

3. Expanding the Fredholm determinant into a sum of principal minors in the basis of Fourier modes
leads to combinatorial series (1.4).

The presented approach has been developed in [GL16], with important further generalizations and sim-
plifications discussed in [GL17, CGL].

2 Riemann-Hilbert problem
Consider generic situation where A0,t,1,∞ are diagonalizable. Fix the diagonalizations Aν = G−1

ν ΘνGν
with Θν = diag {θν ,−θν} and assume that all θν /∈ Z/2. Then there exist unique fundamental matrix
solutions Φ(ν) (z) of (1.1), holomorphic on the universal covering of C\ {0, t, 1} and such that

Φ(ν) (z) =

{
(ν − z)Θν G(ν) (z) , for ν = 0, t, 1,

(−z)−Θ∞ G(∞) (z) , for ν =∞,

where G(ν) (z) is holomorphic and invertible in a finite open disk around z = ν and satisfies the normal-
ization condition G(ν) (ν) = Gν .

Further assume for notational simplicity that t ∈ (0, 1). The canonical solutions Φ(0,∞) (z) analytically
continue to holomorphic functions on CP1\R≥0. Similarly, Φ(t) (z) and Φ(1) (z) are naturally defined
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on CP1\ ((−∞, 0] ∪ [t,∞)) and CP1\ ((−∞, t] ∪ [1,∞)), respectively. Take an arbitrary fundamental
solution Φ (z), defined on CP1\R≥0. The connection matrices Cν,ε = Φ (z) Φ(ν) (z)

−1
, with ε = sgn=z,

are independent of z. They satisfy the compatibility conditions

C0,+ = C0,−, C∞,+ = C∞,−,

M0 = C0,−e
2πiΘ0C−1

0,+ = Ct,−C
−1
t,+, M−1

∞ = C1,−e
2πiΘ1C−1

1,+ = C∞,−e
−2πiΘ∞C−1

∞,+,

M0Mt = (M1M∞)
−1

= Ct,−e
2πiΘtC−1

t,+ = C1,−C
−1
1,+.

where Mν denotes anticlockwise monodromy matrix of Φ (z) around the Fuchsian singular point ν ∈
{0, t, 1,∞}. The (conjugacy class of) connection matrices {Cν,±} and exponents {Θν} of local monodromy
constitute the monodromy data for the 4-point Fuchsian system (1.1).

Let Γ ⊂ CP1 be an oriented contour consisting of a finite number of smooth curves intersecting
transversally, and let J (z) be an SL (2,C)-valued function on Γ. We will assign to the pair (Γ, J) two
Riemann-Hilbert problems (RHPs). They ask to find functions Ψ (z), Ψ̄ (z) holomorphic on CP1\Γ such
that their boundary values on the positive and negative side of Γ satisfy

direct RHP : J (z) = Ψ− (z)
−1

Ψ+ (z) , (2.1a)

dual RHP : J (z) = Ψ̄+ (z) Ψ̄− (z)
−1
. (2.1b)

We are going to transform (1.1) into a RHP on a circle. This is achieved in several steps:

1. Start with the contour Γ̃ shown in Fig. 2a by solid black curves. Denote by Dν the disk bounded
by the circle isolating the point z = ν and define

Ψ̃ (z) =

{
G(ν) (z) , z ∈ Dν ,

Φ (z) , z /∈ R≥0 ∪ D̄0 ∪ D̄t ∪ D̄1 ∪ D̄∞.

Comparing with (2.1b), we see that the matrix function Ψ̃ (z) solves a dual RHP set on Γ̃ with the
jumps indicated in Fig. 2a.

2. Next cancel the constant jump (M0Mt)
−1 on the real segment cut out by the dashed red circles

Cout,in. To this end, let us write M0Mt = e2πiS with S = diag {σ,−σ} (in the generic situation we
may choose to work in the basis where M0Mt is diagonal). Denote by Â the open annulus bounded
by Cout,in and set

Ψ̂ (z) =

{
(−z)−S Ψ̃ (z) , z ∈ Â,
Ψ̃ (z) , z /∈ ¯̂A.

The dual RHP for Ψ̂ (z) is set on the contour Γ̂ indicated in Fig. 2b by solid black lines. The jump
matrices associated to Cout and Cin are (−z)−S; on the rest of the contour the jumps are the same
as for Ψ̃ (z).

3. The contour Γ̂ has two connected components, Γ+ and Γ−, containing respectively Cout and Cin.
The RHPs obtained by restricting the initial contour to Γ+ or Γ− while keeping the same jumps are
then generically solvable. Their solutions are related to fundamental matrices of 3-point Fuchsian
systems whose singular poins are 0, t,∞ and 0, 1,∞. Let us suggestively denote these solutions by
Ψ− (z) and Ψ+ (z). The subscript reminds that these functions are analytic outside and inside C,
respectively.

Consider an auxiliary circle C inside Â, indicated by dashed red line in Fig. 2b, and define

Ψ̄ (z) =

{
Ψ+ (z)

−1
Ψ̂ (z) , outside C,

Ψ− (z)
−1

Ψ̂ (z) , inside C.
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The matrix function Ψ̄ (z) has no jumps except on C. The jump of the relevant dual RHP is written
in the form of direct factorization,

J (z) = Ψ− (z)
−1

Ψ+ (z) , (2.2)

cf (2.1a). The problem of solving the 4-point Fuchsian system with a prescribed monodromy is now
converted into a RHP on a single circle C (Fig. 2c) and the jump matrix expressed in terms of 3-
point solutions. The latter can be found explicitly and expressed in terms of Gauss hypergeometric
functions.

t0 1

( )t-z Ct,-

-1-Qt

( )t-z Ct,+
-1-Qt (1 )-z C1,+

-1-Q1

(1 )-z C1,-

-1-Q1

( )-z C0

-1
( )   C-z

-Q0-1

8

Q 8

M0

-1
M 8e

-2 ip s

t0 1

( )-z
-s

( )-z
-s

e
-2 ip s

e
-2 ip s

C

C
out

in C

out
C

in

C

C

(a) (b)

(c)

Figure 2: Transformation of contours of RHPs for (a) Ψ̃ (b) Ψ̂ (c) Ψ̄.

3 Tau function as Fredholm determinant

Introduce the Hilbert space H = L2
(
C,C2

)
. Its elements will be seen as column vector functions. This

space can be decomposed as H = H+ ⊕ H−, where the functions from H+ (H−) continue analytically
inside C (resp. outside C and vanish at ∞). We denote by Π± the projections on H± along H∓.

Definition 3.1. The tau function of the RHPs defined by (C, J) is defined as Fredholm determinant

τ [J ] = detH+

(
Π+J

−1Π+J Π+

)
. (3.1)
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Remark 3.2. Expand J inside A into Laurent series, J (z) =
∑
k∈Z Jkz

k, and consider block Toeplitz
matrix

TK [J ] =


J0 J−1 J−2 . . . J−K+1

J1 J0 J−1 . . . J−K+2

J2 J1 J0 . . . J−K+3

...
...

...
. . .

...
JK−1 JK−2 JK−3 . . . J0

 .

A celebrated theorem of Widom [W2] states that lim
K→∞

detTK [J ] = τ [J ]. The relevant Fredholm deter-

minant is called the (Szegö-)Widom constant in this context.

Suppose that J (z) admits a direct factorization (2.1a). Define two Cauchy-Plemelj operators a =
Ψ+Π+Ψ−1

+

∣∣
H−

, d = Ψ−Π−Ψ−1
−
∣∣
H+

. They can be explicitly written as integral operators

(af) (z) =
1

2πi

∮
C
a (z, z′) f (z′) dz′, (df) (z) =

1

2πi

∮
C
d (z, z′) f (z′) dz′,

where

a (z, z′) =
1−Ψ+ (z) Ψ+ (z′)

−1

z − z′
, d (z, z′) =

Ψ− (z) Ψ− (z′)
−1 − 1

z − z′
. (3.2)

The integral kernels a (z, z′) and d (z, z′) have integrable form, are not singular on the diagonal z = z′

and extend to analytic functions on A×A.

Proposition 3.3. If the direct RHP (2.1a) is solvable, then τ [J ] can be alternatively rewritten as

τ [J ] = detH (1 +K) , K =

(
0 a
d 0

)
∈ End (H+ ⊕H−) , (3.3)

where integral operators a and d have block integrable kernels defined by (3.2).

The relation between τ [J ] and the Painlevé VI tau function τVI (t) can be obtained using another
result of Widom [W1]. The differentiation formula below may be considered a precursor of the Jimbo-
Miwa-Ueno definition of the isomonodromic tau function.

Theorem 3.4. Consider a smooth family of SL (2,C)-loops (z, t) 7→ J (z, t) depending on additional
parameter t and admitting both factorizations (2.1). Then

∂t ln τ [J ] =
1

2πi

∮
C

Tr
{
J−1∂tJ

[
∂zΨ̄− Ψ̄−1

− + Ψ−1
+ ∂zΨ+

]}
dz. (3.4)

In the situation we are interested in, the matrices Ψ̄± (z), Ψ± (z) are expressed in terms of the
fundamental solutions of 4-point and 3-point Fuchsian systems, which allows to find their z- and t-
derivatives. This ultimately reduces the integration in (3.4) to residue calculation and yields our first
important result:

Corollary 3.5. We have the following identification:

τVI (t) = const · tσ
2−θ20−θ

2
t τ [J ] , (3.5)

with jump matrix J defined by (2.2). Proposition 3.3 thereby provides an explicit Fredholm determinant
representation for τVI (t), the relevant integral operator acting in H = L2 (C)⊕ L2 (C).
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4 Combinatorial series

Let Z′ = Z + 1
2 be the half-integer lattice, Z′± = Z′≷0, and let Conf (Z′) = {0, 1}Z

′
be the set of all

finite subsets of Z′. The elements X ⊂ Conf (Z′) determine the positions of particles pX := X ∩ Z′+ and
holes hX := X ∩Z′− thereby defining point configurations on Z′. A configuration X may be alternatively
represented by

• A Maya diagram mX obtained by drawing filled circles at sites
(
Z′+
∖
pX
)
∪ hX and empty circles

at pX ∪
(
Z′−
∖
hX
)
, see Fig. 3. The charge of mX is defined as QX = |pX | − |hX |. The set of all

Maya diagrams will be denoted by M.

• A charged partition/Young diagram (λX , QX) ∈ Y × Z. The Maya diagram corresponding to
(λX , QX) can be described by the positions of empty circles, given by

{
(λX)k − k + 1

2 +QX
}∞
k=1

,
cf Fig. 3.

... ...

N
E

N
W

Q

1
2

3
2

1
2

-
5
2

3
2

5
2

- -
7
2

9
2

7
2

-
9
2

-

=

=

Figure 3: Correspondence between Maya and charged Young diagrams. The
positions of particles and holes are pX =

{
1
2 ,

3
2 ,

7
2 ,

13
2

}
and hX =

{
− 5

2 ,−
1
2

}
. The

charge QX = 2 corresponds to the signed distance between the north-east axis
and appropriate boundary of the profile of λX .

Let K ∈ CX×X be a matrix indexed by a discrete set X; the latter can be infinite, in which case K
is required to be a trace class operator on `2 (X). The determinant det (1 +K) can be expressed as the
sum of principal minors enumerated by all possible subsets of X:

det (1 +K) =
∑

Y∈{0,1}X
detKY,

i.e. KY is the restriction of K to rows and columns labeled by elements of Y.
We now apply this formula to the determinant (3.3). Rewrite the integral operators a and d in the

Fourier basis. Their kernels (3.2) may be expressed as

a (z, z′) =
∑

p,q∈Z′+

a p
−qz
− 1

2 +pz′−
1
2 +q, d (z, z′) =

∑
p,q∈Z′+

d−qpz
− 1

2−qz′−
1
2−p, (4.1)

where the coefficients a p
−q, d

−q
p ∈ Mat2×2 (C) are themselves matrices whose elements we write as

a p;α
−q;β , d

−q;α
p;β . The “color” indices α, β ∈ {1, 2} correspond to matrix structure of the RHP defined by

the loop J . The principal minors of K in (3.3) are therefore labeled by pairs of Maya diagrams

m = (m1,m2) =
(
p,h
)
∈M2,

p = p1 t p2, h = h1 t h2.

Here pα ∈ {0, 1}Z
′
+ , hα ∈ {0, 1}Z

′
− denote the positions of particles and holes of color α ∈ {1, 2}. The

minors with |p| 6= |h| clearly vanish, cf Fig. 4. We may thus restrict the summation to pairs of Maya
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h

2
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{
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2

1

2
-

5

2

3

2

5

2
- -

7

2

( )( , ) =l m

n = 1

7

2
-

Figure 4: Example of labeling of principal minors.

diagrams of zero total charge,

τ [J ] =
∑

m∈M2: |p|=|h|

Z [+]
m Z [−]

m ,

Z [+]
m = det a p

h, Z [−]
m = (−1)

|p|
det d h

p.

(4.2)

The matrices a p
h, d

h
p ∈ Mat|p|×|p| (C) correspond to the upper-right and lower-left block in the principal

minor in Fig. 4. Using the identification of Maya diagrams and charged partitions described above, the
individual contributions to (4.2) may also be labeled by a pair of Young diagrams (λ, µ) ∈ Y2 and an
integer n = Qλ = −Qµ defining the charges assigned to λ and µ. Adapting the notation, the combinatorial
expansion (4.2) may then be written as

τ [J ] =
∑
n∈Z

∑
λ,µ∈Y

Z
[+]
λ,µ,nZ

[−]
λ,µ,n. (4.3)

Combining the last result with Corollary 3.5, the combinatorial structure of (1.4a)–(1.4b) becomes
manifest. To finish the proof of the main conjecture, it now suffices to compute matrix elements a p

−q, d
−q
p.

It turns out that a and d are represented in the Fourier basis by infinite Cauchy matrices. Finite deter-
minants Z [±]

λ,µ,n therefore have nice factorized expressions, finally leading to (1.4c), (1.4d).
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