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1. Introduction
Let λ be an (integer) partition or the corresponding Young diagram. A reverse plane
partition of shape λ is a filling of cells in λ with nonnegative integers such that all rows
and columns are weakly increasing. One of the most prominent results in the study
of reverse (or ordinary) plane partitions is the discovery of nice generating functions,
namely those which can be nicely factored.

The first discovery is due to MacMahon [6] who proved the triple product formula

∑
π

q|π| =
r∏
i=1

c∏
j=1

n∏
k=1

1− qi+j+k−1

1− qi+j+k−2
(1)

for plane partitions π of r × c rectangular shape with parts at most n. MacMahon’s
study on plane partitions was later revived by Stanley [7]. Among his vast amounts
of contributions a nice generating function involving the trace statistic is of great
importance [8]. Stanley’s trace generating function was much refined by Gansner [1]
who derived the multi-trace generating function

∑
π∈RPP(λ)

c−1∏
`=1−r

x
tr`(π)
` =

∏
(i,j)∈λ

1

1−
∏λi−i

`=j−λ′j
x`

(2)

where RPP(λ) denotes the set of reverse plane partitions π = (πi,j) of shape λ with r
rows and c columns, tr`(π) =

∑
−i+j=` πi,j the `-trace, and λ′ the shape conjugate with

λ. Note that the parts of plane partitions considered in (1) are bounded from above
by n but the parts of reverse plane partitions in (2) are unbounded. So the multi-trace
generating function (2) is not a generalization of MacMahon’s formula (1), and vice
versa.

The aim of this study is to answer the question: Why (reverse) plane partitions
admit so nice generating functions? Of course the question has been answered from
different viewpoints by many authors who give various proofs to the nice formulas,
with the help of representation theory, by calculating determinants and Pfaffians, and
so on. (See, e.g., [4].) We here have a new viewpoint by an integrable system, the
discrete two-dimensional (2D) Toda molecule [3].

In this talk we clarify a close connection of reverse plane partitions with the discrete
two-dimensional (2D) Toda molecule. Especially we show that a nice partition function
for reverse plane partitions can be derived from each non-vanishing solution to the
discrete 2D Toda molecule (Theorem 6 in Section 4) where reverse plane partitions
considered are those of arbitrary shape with bounded parts. As a concrete example we
derive a partition function which generalizes both MacMahon’s triple product formula
(1) and Gansner’s multi-trace generating function (2) from a specific solution (Theorem
7 in Section 5).
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The key idea comes from a combinatorial interpretation of the discrete 2D Toda
molecule in terms of non-intersecting lattice paths (Section 3). Note that Viennot [9]
takes a similar approach to count non-intersecting Dyck paths by using the quotient-
difference (qd) algorithm for Padé approximation, also known as the discrete (one-
dimensional) Toda molecule.

2. Solutions to the discrete 2D Toda molecule
We see a brief review on the integrable dynamical system discussed throughout the
paper. The discrete two-dimensional (2D) Toda molecule is one of the most typical
integrable dynamical systems that was introduced as a discrete analogue of the Toda
lattice [3]. The evolution of the discrete 2D Toda molecule is described by the difference
equations

a(s,t+1)
n + b(s+1,t)

n = a(s,t)n + b
(s,t)
n+1, (3a)

a(s,t+1)
n b

(s+1,t)
n+1 = a

(s,t)
n+1b

(s,t)
n+1, (3b)

(s, t) ∈ Z2, n ∈ Z≥0, b
(s,t)
0 = 0. (3c)

We introduce the tau function for (3) through the dependent variable transformation

a(s,t)n =
τ
(s+1,t)
n+1 τ

(s,t)
n

τ
(s+1,t)
n τ

(s,t)
n+1

, b(s,t)n =
τ
(s,t+1)
n−1 τ

(s,t)
n+1

τ
(s,t+1)
n τ

(s,t)
n

(4)

with τ
(s,t)
0 = 1. We then obtained from (3) the bilinear form of the discrete 2D Toda

molecule

τ
(s+1,t+1)
n−1 τ

(s,t)
n+1 − τ (s+1,t+1)

n τ (s,t)n + τ (s+1,t)
n τ (s,t+1)

n = 0, (5a)

(s, t) ∈ Z2, n ∈ Z≥1, τ
(s,t)
0 = 1. (5b)

The bilinear form (5) is solved by the determinant

τ (s,t)n = det
0≤i,j<n

(fs+i,t+j) =

∣∣∣∣∣∣∣∣∣∣∣

fs,t · · · fs,t+j · · · fs,t+n−1
...

...
...

fs+i,t · · · fs+i,t+j · · · fs+i,t+n−1
...

...
...

fs+n−1,t · · · fs+n−1,t+j · · · fs+n−1,t+n−1

∣∣∣∣∣∣∣∣∣∣∣
(6)

where f = fi,j is an arbitrary function defined over Z2. The discrete 2D Toda molecule

(3) is therefore solved by a
(s,t)
n , b

(s,t)
n given by (4) with (6) provided that the determinant

never vanishes. Conversely there exists a function f on Z2 which satisfies (4) with (6)

for any solution a
(s,t)
n 6= 0, b

(s,t)
n 6= 0 to (3). It is not difficult to see the following

correspondence between a
(s,t)
n , b

(s,t)
n and f .

Proposition 1. For each solution a
(s,t)
n 6= 0, b

(s,t)
n 6= 0 to the discrete 2D Toda molecule

(3) there exists a function f = fi,j on Z2 which gives the same solution through (4) with
(6). Moreover such an f is uniquely determined up to the transformation fi,j → ϕjfi,j
by any non-vanishing function ϕ = ϕj on Z.

Giving a non-vanishing solution a
(s,t)
n , b

(s,t)
n to the discrete 2D Toda molecule is thus

essentially equivalent to giving a function f over Z2.
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Figure 1: A regular subset L of Z2 and a lattice path. North and west boundary
points are marked by circles and crosses respectively. Convex corners are those doubly
marked.

3. Lattice path combinatorics
We adopt a matrix-like coordinate to draw a square lattice Z2 where the nearest neigh-
bors (i + 1, j), (i− 1, j), (i, j + 1) and (i, j − 1) of a lattice point (i, j) are located on
the south, north, east and west of (i, j) respectively. We call a subset L of Z2 regular
such that (i) if (i, j) ∈ L then (i + k, j + k) ∈ L for all k ≥ 1; (ii) if (i, j) ∈ L then
(i − k, j) 6∈ L and (i, j − k) 6∈ L for some k ≥ 1. We call a point (i, j) ∈ L a north
boundary point if (i − 1, j) 6∈ L; similarly a west boundary point if (i, j − 1) 6∈ L. We
call a point (i, j) ∈ L a convex corner if (i, j) is a north and south boundary point.
The interest is in lattice paths on a regular subset L of Z2 consisting of north and east
steps. See Figure 1 for example.

We think of a regular subset L of Z2 as a graph with vertices L and edges connecting
nearest neighbors. We determine the weights of edges by using a solution a

(s,t)
n , b

(s,t)
n

to the discrete 2D Toda molecule (3) as follows.

(a) The vertical edge with north endpoint at (i, j) is weighted by a
(i−n,j−n)
n if (i−n, j−n)

is a west boundary point of L.

(b) The vertical edge with south endpoint at (i, j) is weighted by b
(i−n,j−n)
n if (i−n, j−n)

is a north boundary point of L.

(c) Every horizontal edge is weighted by 1.

See Figure 2 for example. We define the weight w(L; a, b;P ) of a lattice path P on L
to be the product of the weights of all edges passed by P . We conventionally consider
empty paths P with no steps for which w(L; a, b;P ) = 1. For (i, j) ∈ L and (k, `) ∈ L
we further define

g(L; a, b; i, j; k, `) =
∑
P

w(L; a, b;P ) (7)

where the sum ranges over all lattice paths on L going from (i, j) to (k, `).
Let x(j) denote the x-coordinate (or the vertical —) of the north boundary point

of L with y-coordinate (or horizontal —) equal to j; let y(i) the y-coordinate of the
west boundary point of L with x-coordinate equal to i. The following theorem gives a
combinatorial interpretation of the discrete 2D Toda molecule and refines Proposition
1.



x

y

a
(4,0)
0 b

(4,0)
1

a
(3,1)
0

a
(3,1)
1

a
(2,1)
0

a
(2,1)
1

a
(2,1)
2

b
(2,1)
1

b
(2,1)
2

b
(2,1)
3

b
(2,2)
1

b
(2,2)
2

b
(2,2)
3

a
(1,3)
0

a
(1,3)
1

a
(1,3)
2

b
(1,3)
1

b
(1,3)
2

a
(0,4)
0

a
(0,4)
1

a
(−1,4)
0

a
(−1,4)
1

b
(−1,4)
1

1

1

1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

Figure 2: The weights of edges.

Theorem 2. Let a
(s,t)
n 6= 0, b

(s,t)
n 6= 0 be a solution to the discrete 2D Toda molecule

(3), and let a function f = fi,j on Z2 give the same solution through (4) with (6). Let
L be a regular subset of Z2. For (i, j) ∈ L then

fi,j
fx(j),j

= g(L; a, b; i, y(i); x(j), j). (8)

In order to prove the theorem we use the following lemma.

Lemma 3. Let L be a regular subset of Z2 with a convex corner (s, t) ∈ L. Let L′
denote the regular subset of Z2 obtained from L by deleting (s, t). For (i, j) and (k, `)
in L′ with i− j 6= s− t and k − ` 6= s− t then

g(L; a, b; i, j; k, `) = g(L′; a, b; i, j; k, `). (9)

Proof. The difference between L and L′ is only in the existence and the absence of the
convex corner (s, t), and the weights of vertical edges between the two diagonal lines
d− : y − x = t − s − 1 and d+ : y − x = t − s + 1. (The vertical edges between d−
and d+ are weighted by a

(s,t)
n , b

(s,t)
n on L and by a

(s,t+1)
n , b

(s+1,t)
n on L′.) Assume that

i − j 6= s − t and k − ` 6= s − t meaning that (i, j) and (k, `) is outside the region
between d− and d+. (Those may be on d±.) If both (i, j) and (k, `) are either in the
south of d− or in the north of d+ then the identity (9) clearly holds since lattice paths
going from (i, j) to (k, `) never enter the region between d− and d+. In the rest of the
proof we thus assume that (i, j) is in the south of d− and (k, `) in the north of d+.

Each lattice path P going from (i, j) to (k, `) is uniquely divided into three subpaths:
P− from (i, j) to d−, Q of two steps between d− and d+ and P+ from d+ to (k, `). Obvi-
ously w(P±) = w′(P±) where w and w′ are abbreviations of w(L; a, b; ·) and w(L′; a, b; ·)
respectively. The proof of (9) thus amounts to showing that g(i, j; k, `) = g′(i, j; k, `)
for each (i, j) on d− and (k, `) on d− where g and g′ are abbreviations of g(L; a, b; ·)
and g(L′; a, b; ·) respectively. Since Q is of two steps we have only three cases: (i)
(i, j) = (s + n, t + n − 1) and (k, `) = (s + n, t + n + 1) for some n ≥ 1; (ii)
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Figure 3: Proof of Lemma 3.

(i, j) = (s + n + 1, t + n) and (k, `) = (s + n, t + n + 1) for some n ≥ 0; (iii)
(i, j) = (s + n + 1, t + n) and (k, `) = (s + n − 1, t + n) for some n ≥ 1. See Fig-
ure 3.

Case (i): The unique lattice path going from (i, j) = (s+n, t+n−1) to (k, `) = (s+
n, t+n+1) of two east steps is both on L and on L′. Thus g(i, j; k, `) = g′(i, j; k, `) = 1.

Case (ii): There are two lattice paths going from (i, j) = (s + n + 1, t + n) to
(k, `) = (s+n, t+n+ 1) one of which is Q1 going north and east, the other is Q2 going

east and north. If n ≥ 1 then Q1 and Q2 are both on L and on L′, and w(Q1) = a
(s,t)
n ,

w(Q2) = b
(s,t)
n+1, w

′(Q1) = a
(s,t+1)
n and w′(Q2) = b

(s+1,t)
n . Thus g(i, j; k, `) = a

(s,t)
n +b

(s,t)
n+1 =

a
(s,t+1)
n + b

(s+1,t)
n = g′(i, j; k, `) because of (3b). If n = 0 then Q1 and Q2 are on L while

only Q2 on L′, and w(Q1) = a
(s,t)
0 , w(Q2) = b

(s,t)
1 and w′(Q1) = a

(s,t+1)
0 . (Q1 is not on

L′ since Q1 passes through (s, t) 6∈ L′.) Thus g(i, j; k, `) = a
(s,t)
0 + b

(s,t)
1 = a

(s,t+1)
0 =

g′(i, j; k, `) because of (3a) with (3c).
Case (iii): The unique lattice path going from (i, j) = (s+ n+ 1, t+ n) to (k, `) =

(s + n − 1, t + n) of two north steps is both on L and on L′. The weight of the

lattice path is a
(s,t)
n b

(s,t)
n on L and a

(s,t+1)
n−1 b

(s+1,t)
n on L′. Thus g(i, j; k, `) = a

(s,t)
n b

(s,t)
n =

a
(s,t+1)
n−1 b

(s+1,t)
n = g′(i, j; k, `) because of (3b).

Proof of Theorem 2. Let L′ denote the regular subset of Z2 defined by L′ = L\{(s, t) ∈
L; s < i and t < j}. From Lemma 3 then g(L; a, b; i, y(i); x(j), j) = g(L′; a, b; i, y(i); x(j), j)
because L′ can be obtained from L by iterative deletion of convex corners. A lattice
path going from (i, y(i)) to (x(j), j) on L′ is unique because such a lattice path cannot
turn north until (i, j) and cannot turn east from (i, j). The weight of the unique lattice

path on L′ implies that g(L′; a, b; i, y(i); x(j), j) =
∏i−1

k=x(j) a
(k,j)
0 . The last product is

equal to fi,j/fx(j),j because a
(k,j)
0 = fk+1,j/fk,j from (4) and (6).

Theorem 2 admits a combinatorial interpretation of the determinant τ
(s,t)
n by means

of Gessel–Viennot–Lindström’s method [2, 5]. For (s, t) ∈ L and n ≥ 0 we define
LP(L, s, t, n) to be the set of n-tuples (P0, . . . , Pn−1) of lattice paths on L such that (i)
Pk goes from (s+k, y(s)+k) to (x(t)+k, t+k) for each 0 ≤ k < n, and (ii) P0, . . . , Pn−1
are non-intersecting: Pj ∩ Pk = ∅ if j 6= k. See Figure 4, the second figure shows an
n-tuple of non-intersecting lattice paths.

Theorem 4. Let a
(s,t)
n 6= 0, b

(s,t)
n 6= 0 be a solution to the discrete 2D Toda molecule

(3), and let a function f = fi,j on Z2 give the same solution through (4) with (6). Let
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τ
(s,t)
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∏n−1
k=0 fx(t+k),t+k
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LP(L, s, t, n) τ
(x(t),t)
n /

∏n−1
k=0 fx(t+k),t+k

Figure 4: Proof of Theorem 4 where (s, t) = (5, 4) and n = 4. In the first figure the
steps in gray are frozen due to the non-intersecting condition.

L be a regular subset of Z2. For (s, t) ∈ L and n ≥ 0 then

τ
(s,t)
n

τ
(x(t),t)
n

=
∑

(P0,...,Pn−1)∈LP(L,s,t,n)

n−1∏
k=0

w(L; a, b;Pk) (10)

where τ
(s,t)
n = det0≤i,j<n(fs+i,t+j).

Proof. Gessel–Viennot–Lindström’s method yields from Theorem 2 that

τ
(s,t)
n∏n−1

k=0 fx(t+k),t+k
=

∑
(P ′0,...,P

′
n−1)

n−1∏
k=0

w(L; a, b;P ′k) (11)

where the sum ranges over all n-tuples (P ′0, . . . , P
′
n−1) of non-intersecting lattice paths

on L such that P ′k goes from (s+k, y(s+k)) to (x(t+k), t+k) for each 0 ≤ k < n. Elimi-
nating the steps frozen due to the non-intersecting condition we obtain (P0, . . . , Pn−1) ∈
LP(L, s, t, n), see Figure 4 for example. The weight of the eliminated frozen steps is
equal to the weight of a unique configuration of non-intersecting lattice paths from
τ
(x(t),t)
n /

∏n−1
k=0 fx(t+k),t+k, see the first and the last figures in Figure 4 for example. Thus

τ
(s,t)
n is equal to the right-hand side of (10) multiplied by τ

(x(t),t)
n .

Note that the left-hand side of (10) can be expressed as

τ
(s,t)
n

τ
(x(t),t)
n

=

s−x(t)∏
i=1

n∏
k=1

a
(s−i,t)
k−1 (12)

from (4). We can readily evaluate the sum in (10), a partition function for non-
intersecting lattice paths, by using this formula.

4. Multiplicative partition functions for reverse plane parti-
tions

Let λ be a partition and let n ≥ 0. We write RPP(λ, n) for the set of reverse plane
partitions of shape λ with parts at most n. Let r and c denote the numbers of rows
and columns in λ respectively. We then define a regular subset L(λ) of Z2 by

L(λ) = {(i, j) ∈ Z2
≥0; j ≥ c− λr−i} (13)
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Figure 5: The bijection between LP(L(λ), r, c, n) and RPP(λ, n) where λ = (5, 4, 4, 2, 1)
with r = 5 rows and c = 5 columns, and n = 4.

where λi denotes the i-th part of λ for 1 ≤ i ≤ r and λi = c for i ≤ 0. There is a
bijection between LP(L(λ), r, c, n) and RPP(λ, n) which is described as follows. Given
an n-tuple (P0, . . . , Pn−1) ∈ LP(L(λ), r, c, n) of non-intersecting lattice paths on L(λ)

(i) move the lattice path Pk northwest by (−k,−k) for each 0 ≤ k < n;

(ii) fill in the cells between Pn−k−1 and Pn−k with k for each 0 ≤ k ≤ n where P−1 is
the lattice path going from (r, 0) to (0, c) along the border of L(λ) and Pn is that
going east from (r, 0), turning north at (r, c) and going north to (0, c);

(iii) rotate 180◦ to obtain a reverse plane partition in RPP(λ, n).

Figure 5 demonstrates the bijection by an example. It should be noted that this
bijection is essentially the same as the classical interpretation of plane partitions by
“zig-zag” non-intersecting paths [4].

We set up weight for reverse plane partitions which is equivalent to the weight for
lattice paths defined in Section 3. Let λ′ = (λ′1, . . . , λ

′
c) denote the partition conjugate

with λ. We define αi,j by

αi+k,λi+k = a
(r−i,c−λi)
n−k−1 , αλ′j+k,j+k−1 = b

(r−λ′j ,c−j)
n−k (14)

for 1 ≤ i ≤ r, 1 ≤ j ≤ c and k < n where a
(s,t)
n 6= 0, b

(s,t)
n 6= 0 is a solution to the

discrete 2D Toda molecule (3). We then define the weight of a reverse plane partition
π by

v(λ, n; a, b; π) =
∏

(i,j)∈λ

vi,j(λ, n; a, b; π) with (15a)

vi,j(λ, n; a, b; π) =

πi,j∏
k=1

αi+k−1,j+k−2
αi+k−1,j+k−1

. (15b)

Lemma 5. Let λ be a partition with r rows and c columns, and let n ≥ 0. Assume
that π ∈ RPP(λ, n) and (P0, . . . , Pn−1) ∈ LP(L(λ), r, c, n) corresponds to each other by
the bijection. Then

v(λ, n; a, b; π) =

∏n−1
k=0 w(L(λ); a, b;Pk)∏r
i=1

∏n
k=1 a

(r−i,c−λi)
k−1

. (16)

Sketch of proof. Actually αi,j is defined so that v(π) = v(λ, n; a, b; π) is proportional
to
∏n−1

k=0 w(Pk) with w(P ) = w(L(λ); a, b;P ). That is, there exists a constant κ such



that v(π) = κ
∏n−1

k=0 w(Pk). From (15), v(λ, n; a, b; π∅) = 1 for the empty reverse plane
partition π∅ ∈ RPP(λ, n) whose parts are all 0. Thus κ−1 =

∏n−1
k=0 w(P ∅k ) where

(P ∅0 , . . . , P
∅
n−1) ∈ LP(L(λ), r, c, n) corresponds to π∅ by the bijection. We observe that

P ∅0 goes from (r, 0) to (0, c) along the border of L(λ), and P ∅1 , . . . , P
∅
n−1 are copies of

P ∅0 . Especially w(P ∅k ) =
∏r

i=1 a
(r−i,c−λi)
k and hence κ−1 is equal to the denominator of

the right-hand side of (16).

The following is the main theorem of this paper.

Theorem 6. Let a
(s,t)
n 6= 0, b

(s,t)
n 6= 0 be a solution to the discrete 2D Toda molecule

(3). Let λ be a partition with r rows and c columns, and let n ≥ 0. Then

∑
π∈RPP(λ,n)

v(λ, n; a, b; π) =
r∏
i=1

n∏
k=1

a
(r−i,c)
k−1

a
(r−i,c−λi)
k−1

. (17)

Proof. This theorem is a translation of Theorem 4 via the bijection with the help of
(12) and Lemma 5.

Theorem 6 allows us to find a multiplicative partition function for reverse plane
partitions of arbitrary shape with bounded parts from each non-vanishing solution to
the discrete 2D Toda molecule (3).

5. An example
The discrete 2D Toda molecule (3) has the solution

a(s,t)n = [p]s+ns+1 (1− a[p]s1[q]
t+n
1 ), (18a)

b(s,t)n = a[p]s+n−11 [q]t1(1− [q]t+nt+1 ) (18b)

with the notation that [z]nm =
∏n

`=m z` if m ≤ n, [z]nm = 1 if m = n + 1 and [z]nm =∏m−1
`=n z

−1
` if m ≥ n+ 2. The solution involves indeterminates a and p`, q` for ` ∈ Z as

parameters.
Let λ be a partition with r rows and c columns. Assume that

a = [x]λr−rc−λ′c , pi = [x]
c−r+i−µi+1

c−r+i−µi , qj = [x]
µ′j−j−r+c
µ′j+1−j−r+c

. (19)

We then have a solution

a(s,t)n = [x]
c−r+s+n−µs+n+1

c−r+s+1−µs+1
(1− [x]

c−r+s−µs+1

µ′t+n+1−t−n−r+c
), (20a)

b(s,t)n = [x]
c−r+s+n−1−µs+n
µ′t+1−t−r+c

(1− [x]
µ′t+1−t−1−r+c
µ′t+n+1−t−n−r+c

). (20b)

Let n ≥ 0. The solution (20) yields the weight of (15) with (14) given by

v(λ, n; a, b; π) =
c−1∏
`=1−r

x
tr`(π)
`

∏
(i,j)∈λ

πi,j∏
k=1

1− [x]j−i−1−n+j+k−1−λ′−n+j+k−1

1− [x]j−i−n+j+k+λ′−n+j+k

. (21)

As an instance of Theorem 6 we obtain the following multiplicative partition function
for reverse plane partition.



Theorem 7. Let λ be a partition with r rows and c columns, and let n ≥ 0. Then

∑
π∈RPP(λ,n)

v(λ, n; a, b; π) =
∏

(i,j)∈λ

1− [x]λi−i−n+j−λ′−n+j

1− [x]λi−ij−λ′j

(22)

where the weight v(λ, n; a, b; π) is given by (21).

Proof. Substituting the solution (20) for the right-hand side of (17) we get

r∏
i=1

n∏
k=1

1− [x]λi−i−k+1−λ′−k+1

1− [x]λi−i−k+1+λi−λ′−k+1+λi

=
r∏
i=1

λi∏
j=1

n∏
k=1

1− [x]λi−ij−k−λ′j−k

1− [x]λi−ij−k+1−λ′j−k+1

(23a)

=
r∏
i=1

λi∏
j=1

1− [x]λi−i−n+j−λ′−n+j

1− [x]λi−ij−λ′j

. (23b)

The last product is the same as the right-hand side of (22).

The multiplicative partition function in Theorem 7 generalizes the multi-trace gen-
erating function (2) by Gansner. Indeed (22) reduces into (2) as n → ∞ because
limn→∞[x]const.−n+const. = 1 as formal power series, limn→∞ λ

′
−n = r and limn→∞ v(λ, n; a, b; π) =∏c−1

`=1−r x
tr`(π)
` .

Assuming x` = q for ` ∈ Z we obtain the partition function∑
π∈RPP(λ,n)

v(λ, n; a, b; π) =
∏

(i,j)∈λ

1− qλi+λ′j−n−i−j+n+1

1− qλi+λ′j−i−j+1
with (24a)

v(λ, n; a, b; π) = q|π|
∏

(i,j)∈λ

πi,j∏
k=1

1− qn−i−k+1+λ′−n+j+k−1

1− qn−i−k+1+λ′−n+j+k
(24b)

from (21) and (22). If λ = (cr), an r × c rectangular shape, that becomes the triple
product formula (1) by MacMahon. The partition function (24) is thus regarded as a
generalization of (1) for reverse plane partitions of arbitrary shape.
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